These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37286123)

  • 1. Fabric dyeing wastewater treatment and salt recovery using a pilot scale system consisted of graphite electrodes based on electrooxidation and nanofiltration.
    Yildirim R; Eskikaya O; Keskinler B; Karagunduz A; Dizge N; Balakrishnan D
    Environ Res; 2023 Oct; 234():116283. PubMed ID: 37286123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water recovery from yarn fabric dyeing wastewater using electrochemical oxidation and membrane processes.
    Bouchareb R; Bilici Z; Dizge N
    Water Environ Res; 2022 Jan; 94(1):e1681. PubMed ID: 35075710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill.
    Yukseler H; Uzal N; Sahinkaya E; Kitis M; Dilek FB; Yetis U
    J Environ Manage; 2017 Dec; 203(Pt 3):1118-1125. PubMed ID: 28342687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The color removal and fate of organic pollutants in a pilot-scale MBR-NF combined process treating textile wastewater with high water recovery.
    Li K; Jiang C; Wang J; Wei Y
    Water Sci Technol; 2016; 73(6):1426-33. PubMed ID: 27003085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process.
    Kim HL; Cho JB; Park YJ; Cho IH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(8):661-8. PubMed ID: 27089124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated process for wet scrubber wastewater treatment using electrooxidation and pressure-driven membrane filtration.
    Belibagli P; Isik Z; Özdemir S; Gonca S; Dizge N; Awasthi MK; Balakrishnan D
    Chemosphere; 2022 Dec; 308(Pt 2):136216. PubMed ID: 36075362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reuse of textile reactive azo dyebaths following biological decolorization.
    Lee YH; Pavlostathis SG
    Water Environ Res; 2004; 76(1):56-66. PubMed ID: 15058465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reuse of textile wastewater for dyeing cotton knitted fabric with hybrid treatment: Coagulation/sand filtration/UF/NF-RO.
    Ćurić I; Dolar D; Bošnjak J
    J Environ Manage; 2021 Oct; 295():113133. PubMed ID: 34182340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical oxidation of textile industry wastewater by graphite electrodes.
    Bhatnagar R; Joshi H; Mall ID; Srivastava VC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(8):955-66. PubMed ID: 24766597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of tomato paste wastewater by electrochemical and membrane processes: process optimization and cost calculation.
    Şen A; Akarsu C; Bilici Z; Arslan H; Dizge N
    Water Sci Technol; 2024 Apr; 89(7):1879-1890. PubMed ID: 38619909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the electrochemical oxidation of textile wastewater by graphite electrodes by response surface methodology and artificial neural network.
    Saleh M; Yildirim R; Isik Z; Karagunduz A; Keskinler B; Dizge N
    Water Sci Technol; 2021 Sep; 84(5):1245-1256. PubMed ID: 34534120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric study of a dyeing wastewater treatment by modified sericite.
    Choi HJ; Kim KH
    Environ Technol; 2016 Oct; 37(20):2572-9. PubMed ID: 26936387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes.
    Soares PA; Silva TF; Manenti DR; Souza SM; Boaventura RA; Vilar VJ
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):932-45. PubMed ID: 23832802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents.
    Yao HY; Guo H; Shen F; Li T; Show DY; Ling M; Yan YG; Show KY; Lee DJ
    Bioresour Technol; 2023 Jul; 379():129060. PubMed ID: 37075851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.
    Boopathy R; Sekaran G
    J Hazard Mater; 2013 Sep; 260():286-95. PubMed ID: 23770619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of different textile fibers on characterization of dyeing wastewater and final effluent.
    Dos Santos RF; Ramlow H; Dolzan N; Machado RAF; de Aguiar CRL; Marangoni C
    Environ Monit Assess; 2018 Oct; 190(11):693. PubMed ID: 30382411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode.
    Wang CT; Hu JL; Chou WL; Kuo YM
    J Hazard Mater; 2008 Apr; 152(2):601-6. PubMed ID: 17707581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of photochemical integrated submerged membrane bioreactor for textile dyeing wastewater treatment.
    Sathya U; Keerthi P; Nithya M; Balasubramanian N
    Environ Geochem Health; 2021 Feb; 43(2):885-896. PubMed ID: 32335846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paired removal of color and COD from textile dyeing wastewater by simultaneous anodic and indirect cathodic oxidation.
    Wang CT; Chou WL; Kuo YM; Chang FL
    J Hazard Mater; 2009 Sep; 169(1-3):16-22. PubMed ID: 19362772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pre-treatment methods on membrane flux, COD, and total phenol removal efficiencies for membrane treatment of pistachio wastewater.
    Ozay Y; Dizge N
    J Environ Manage; 2022 May; 310():114762. PubMed ID: 35220102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.