These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37286636)

  • 1. Spatial distribution of three ARGONAUTEs regulates the anther phasiRNA pathway.
    Tamotsu H; Koizumi K; Briones AV; Komiya R
    Nat Commun; 2023 Jun; 14(1):3333. PubMed ID: 37286636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function.
    Shi C; Zhang J; Wu B; Jouni R; Yu C; Meyers BC; Liang W; Fei Q
    New Phytol; 2022 Nov; 236(4):1529-1544. PubMed ID: 36031742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs.
    Komiya R; Ohyanagi H; Niihama M; Watanabe T; Nakano M; Kurata N; Nonomura K
    Plant J; 2014 May; 78(3):385-97. PubMed ID: 24635777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways.
    Fei Q; Yang L; Liang W; Zhang D; Meyers BC
    J Exp Bot; 2016 Nov; 67(21):6037-6049. PubMed ID: 27702997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Imaging and In Situ Hybridization for Uncovering the Functions of MicroRNA in Rice Anther.
    Koizumi K; Komiya R
    Methods Mol Biol; 2022; 2509():93-104. PubMed ID: 35796959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR2118-dependent U-rich phasiRNA production in rice anther wall development.
    Araki S; Le NT; Koizumi K; Villar-Briones A; Nonomura KI; Endo M; Inoue H; Saze H; Komiya R
    Nat Commun; 2020 Jun; 11(1):3115. PubMed ID: 32561756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitin-dependent Argonauteprotein MEL1 degradation is essential for rice sporogenesis and phasiRNA target regulation.
    Lian JP; Yang YW; He RR; Yang L; Zhou YF; Lei MQ; Zhang Z; Huang JH; Cheng Y; Liu YW; Zhang YC; Chen YQ
    Plant Cell; 2021 Aug; 33(8):2685-2700. PubMed ID: 34003932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice.
    Si F; Luo H; Yang C; Gong J; Yan B; Liu C; Song X; Cao X
    Sci China Life Sci; 2023 Feb; 66(2):197-208. PubMed ID: 36239908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses.
    Tamim S; Cai Z; Mathioni SM; Zhai J; Teng C; Zhang Q; Meyers BC
    New Phytol; 2018 Nov; 220(3):865-877. PubMed ID: 29708601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing.
    Komiya R
    J Plant Res; 2017 Jan; 130(1):17-23. PubMed ID: 27900550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D multiple immunoimaging using whole male organs in rice.
    Araki S; Tamotsu H; Komiya R
    Sci Rep; 2022 Sep; 12(1):15426. PubMed ID: 36104379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiviral roles of plant ARGONAUTES.
    Carbonell A; Carrington JC
    Curr Opin Plant Biol; 2015 Oct; 27():111-7. PubMed ID: 26190744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 24-nt reproductive phasiRNAs are broadly present in angiosperms.
    Xia R; Chen C; Pokhrel S; Ma W; Huang K; Patel P; Wang F; Xu J; Liu Z; Li J; Meyers BC
    Nat Commun; 2019 Feb; 10(1):627. PubMed ID: 30733503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grass phasiRNAs and male fertility.
    Yu Y; Zhou Y; Zhang Y; Chen Y
    Sci China Life Sci; 2018 Feb; 61(2):148-154. PubMed ID: 29052095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal regulation and roles of reproductive phasiRNAs in plants.
    Komiya R
    Genes Genet Syst; 2022 Feb; 96(5):209-215. PubMed ID: 34759068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microRNA biogenesis-like pathway for producing phased small interfering RNA from a long non-coding RNA in rice.
    Huang J; Wang R; Dai X; Feng J; Zhang H; Zhao PX
    J Exp Bot; 2019 Mar; 70(6):1767-1774. PubMed ID: 30775774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells.
    Jiang P; Lian B; Liu C; Fu Z; Shen Y; Cheng Z; Qi Y
    Nat Commun; 2020 Oct; 11(1):5191. PubMed ID: 33060587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize.
    BĂ©langer S; Pokhrel S; Czymmek K; Meyers BC
    Plant Physiol; 2020 Nov; 184(3):1407-1423. PubMed ID: 32917771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum.
    Ono S; Liu H; Tsuda K; Fukai E; Tanaka K; Sasaki T; Nonomura KI
    PLoS Genet; 2018 Feb; 14(2):e1007238. PubMed ID: 29432414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers.
    Zhou X; Huang K; Teng C; Abdelgawad A; Batish M; Meyers BC; Walbot V
    New Phytol; 2022 Jul; 235(2):488-501. PubMed ID: 35451503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.