These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3728682)

  • 1. Active tetraethylammonium uptake across the basolateral membrane of rabbit proximal tubule.
    Tarloff JB; Brand PH
    Am J Physiol; 1986 Jul; 251(1 Pt 2):F141-9. PubMed ID: 3728682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of PAH, urate, TEA, and fluid by isolated perfused and nonperfused avian renal proximal tubules.
    Brokl OH; Braun EJ; Dantzler WH
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1085-94. PubMed ID: 8184950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretion of tetraethylammonium by proximal tubules of rabbit kidneys.
    Schäli C; Schild L; Overney J; Roch-Ramel F
    Am J Physiol; 1983 Aug; 245(2):F238-46. PubMed ID: 6136188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of renal ischemia on organic anion and cation transport in rabbit proximal tubule.
    Kim YK; Kim YH; Jung JS; Lee SH
    Kidney Blood Press Res; 1996; 19(6):332-9. PubMed ID: 8990045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of probenecid on tetraethyl ammonium (TEA) transport across basolateral membrane of rabbit proximal tubule.
    Choi TL; Kim YK
    Korean J Intern Med; 1992 Jul; 7(2):130-6. PubMed ID: 1306074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH sensitivity of the basolateral membrane of the rabbit proximal tubule.
    Biagi BA; Sohtell M
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F261-6. PubMed ID: 3946603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of cimetidine across the basolateral membrane of rabbit kidney proximal tubules: characterization of transport mechanisms.
    Brändle E; Greven J
    J Pharmacol Exp Ther; 1991 Sep; 258(3):1038-45. PubMed ID: 1832461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basolateral tetraethylammonium transport in intact tubules: specificity and trans-stimulation.
    Dantzler WH; Wright SH; Chatsudthipong V; Brokl OH
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F386-92. PubMed ID: 1887903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation of membrane potential to basolateral TEA transport in isolated snake proximal renal tubules.
    Kim YK; Dantzler WH
    Am J Physiol; 1995 Jun; 268(6 Pt 2):R1539-45. PubMed ID: 7611532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basolateral organic cation transport system of rabbit kidney proximal tubules. Influence of anorganic anions.
    Hohage H; Querl IU; Mörth DM; Greven J
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1086-91. PubMed ID: 8968328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell swelling activates basolateral membrane Cl and K conductances in rabbit proximal tubule.
    Welling PA; O'Neil RG
    Am J Physiol; 1990 Apr; 258(4 Pt 2):F951-62. PubMed ID: 2330988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule.
    Biagi BA; Sohtell M
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F267-72. PubMed ID: 3946604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrapentylammonium (TPeA): slowly dissociating inhibitor of the renal peritubular organic cation transporter.
    Groves CE; Wright SH
    Biochim Biophys Acta; 1995 Mar; 1234(1):37-42. PubMed ID: 7880858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of basolateral transport and cellular accumulation of cDDP and N-acetyl- L-cysteine-cDDP by TEA and PAH in the renal proximal tubule.
    Kolb RJ; Ghazi AM; Barfuss DW
    Cancer Chemother Pharmacol; 2003 Feb; 51(2):132-8. PubMed ID: 12647014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of basolateral membranes that transport p-aminohippurate from primary cultures of rabbit kidney proximal tubule cells.
    Yang IS; Goldinger JM; Hong SK; Taub M
    J Cell Physiol; 1988 Jun; 135(3):481-7. PubMed ID: 3397387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of the organic cation N1-methylnicotinamide by the rabbit proximal tubule. I. Accumulation in the isolated nonperfused tubule.
    Besseghir K; Mosig D; Roch-Ramel F
    J Pharmacol Exp Ther; 1990 May; 253(2):444-51. PubMed ID: 2140128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of t-butylhydroperoxide on p-aminohippurat uptake in rabbit renal cortical slices.
    Choi SS; Huh KD; Woo JS; Kim YK
    Korean J Intern Med; 1994 Jul; 9(2):105-12. PubMed ID: 7865484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brush-border TEA transport in intact proximal tubules and isolated membrane vesicles.
    Dantzler WH; Brokl OH; Wright SH
    Am J Physiol; 1989 Feb; 256(2 Pt 2):F290-7. PubMed ID: 2916661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ and Ba2+ effects on basolateral tetraethylammonium transport in isolated snake renal proximal tubules.
    Kim YK; Dantzler WH
    Pflugers Arch; 1997 Dec; 435(1):28-33. PubMed ID: 9359900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microelectrode characterization of the basolateral membrane of rabbit S3 proximal tubule.
    Vance BA; Biagi BA
    J Membr Biol; 1989 Apr; 108(1):53-60. PubMed ID: 2545882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.