These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37286821)

  • 21. Genome-Wide CRISPR Screening for the Identification of Therapy Resistance-Associated Genes in Urothelial Carcinoma.
    Mantwill K; Nawroth R
    Methods Mol Biol; 2023; 2684():155-165. PubMed ID: 37410233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generating Custom Pooled CRISPR Libraries for Genetic Dissection of Biological Pathways.
    Gulbranson DR
    Methods Mol Biol; 2022; 2473():333-347. PubMed ID: 35819774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy.
    Lek A; Zhang Y; Woodman KG; Huang S; DeSimone AM; Cohen J; Ho V; Conner J; Mead L; Kodani A; Pakula A; Sanjana N; King OD; Jones PL; Wagner KR; Lek M; Kunkel LM
    Sci Transl Med; 2020 Mar; 12(536):. PubMed ID: 32213627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function.
    Shifrut E; Carnevale J; Tobin V; Roth TL; Woo JM; Bui CT; Li PJ; Diolaiti ME; Ashworth A; Marson A
    Cell; 2018 Dec; 175(7):1958-1971.e15. PubMed ID: 30449619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pooled genome-wide CRISPR activation screening for rapamycin resistance genes in
    Xia B; Viswanatha R; Hu Y; Mohr SE; Perrimon N
    Elife; 2023 Apr; 12():. PubMed ID: 37078570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of CRISPR systems in respiratory health: Entering a new 'red pen' era in genome editing.
    Moses C; Kaur P
    Respirology; 2019 Jul; 24(7):628-637. PubMed ID: 30883991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cancer CRISPR Screens In Vivo.
    Chow RD; Chen S
    Trends Cancer; 2018 May; 4(5):349-358. PubMed ID: 29709259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method.
    Wang C; Wang K
    Methods Mol Biol; 2019; 1917():27-32. PubMed ID: 30610625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide CRISPR screens for the identification of therapeutic targets for cancer treatment.
    Xue VW; Wong SCC; Cho WCS
    Expert Opin Ther Targets; 2020 Nov; 24(11):1147-1158. PubMed ID: 32893711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recovering false negatives in CRISPR fitness screens with JLOE.
    Dede M; Hart T
    Nucleic Acids Res; 2023 Feb; 51(4):1637-1651. PubMed ID: 36727483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic screens and functional genomics using CRISPR/Cas9 technology.
    Hartenian E; Doench JG
    FEBS J; 2015 Apr; 282(8):1383-93. PubMed ID: 25728500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas Advancement in Molecular Diagnostics and Signal Readout Approaches.
    Ahmed MZ; Badani P; Reddy R; Mishra G
    J Mol Diagn; 2021 Nov; 23(11):1433-1442. PubMed ID: 34454111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exponential family measurement error models for single-cell CRISPR screens.
    Barry T; Roeder K; Katsevich E
    Biostatistics; 2024 Oct; 25(4):1254-1272. PubMed ID: 38649751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is Pooled CRISPR-Screening the Dawn of a New Era for Functional Genomics.
    Yao J; Dai HL
    Adv Exp Med Biol; 2018; 1068():171-176. PubMed ID: 29943304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.