These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37286829)
1. A novel framework to predict chlorophyll-a concentrations in water bodies through multi-source big data and machine learning algorithms. Karimian H; Huang J; Chen Y; Wang Z; Huang J Environ Sci Pollut Res Int; 2023 Jul; 30(32):79402-79422. PubMed ID: 37286829 [TBL] [Abstract][Full Text] [Related]
2. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
3. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
4. Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine. Zhao D; Huang J; Li Z; Yu G; Shen H Sci Total Environ; 2024 Feb; 912():169152. PubMed ID: 38061660 [TBL] [Abstract][Full Text] [Related]
5. Monitoring trophic status using in situ data and Sentinel-2 MSI algorithm: lesson from Lake Malombe, Malawi. Makwinja R; Inagaki Y; Sagawa T; Obubu JP; Habineza E; Haaziyu W Environ Sci Pollut Res Int; 2023 Mar; 30(11):29755-29772. PubMed ID: 36418816 [TBL] [Abstract][Full Text] [Related]
6. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Yang Y; Zhang X; Gao W; Zhang Y; Hou X Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490 [TBL] [Abstract][Full Text] [Related]
7. Prediction of chlorophyll a and risk assessment of water blooms in Poyang Lake based on a machine learning method. Huang H; Zhang J Environ Pollut; 2024 Apr; 347():123501. PubMed ID: 38346640 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, TN and TP concentrations in the Pearl River Estuary based on retrieval algorithm and random forest regression. Yuan X; Wang S; Fan F; Dong Y; Li Y; Lin W; Zhou C Environ Res; 2022 Dec; 215(Pt 3):114380. PubMed ID: 36162468 [TBL] [Abstract][Full Text] [Related]
9. Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll-a content: A case study in the Tri An Reservoir, Vietnam. Nguyen HQ; Ha NT; Nguyen-Ngoc L; Pham TL Water Environ Res; 2021 Dec; 93(12):2941-2957. PubMed ID: 34547152 [TBL] [Abstract][Full Text] [Related]
10. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring. Boucher J; Weathers KC; Norouzi H; Steele B Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690 [TBL] [Abstract][Full Text] [Related]
11. Multiple remotely sensed datasets and machine learning models to predict chlorophyll-a concentration in the Nakdong River, South Korea. Lee B; Im JK; Han JW; Kang T; Kim W; Kim M; Lee S Environ Sci Pollut Res Int; 2024 Oct; 31(48):58505-58526. PubMed ID: 39316212 [TBL] [Abstract][Full Text] [Related]
12. Identifying the drivers of chlorophyll-a dynamics in a landscape lake recharged by reclaimed water using interpretable machine learning. Wang C; Liu J; Qiu C; Su X; Ma N; Li J; Wang S; Qu S Sci Total Environ; 2024 Jan; 906():167483. PubMed ID: 37832666 [TBL] [Abstract][Full Text] [Related]
13. Novel methods for monitoring low chlorophyll-a concentrations in the large, oligotrophic Lake Malawi/Nyasa/Niassa. Makwinja R; Inagaki Y; Tesfamichael SG; Curtis CJ J Environ Manage; 2024 Jul; 364():121462. PubMed ID: 38878578 [TBL] [Abstract][Full Text] [Related]
14. Long-term monitoring chlorophyll-a concentration using HJ-1 A/B imagery and machine learning algorithms in typical lakes, a cold semi-arid region. Ren J; Zhou H; Tao Z; Ge L; Song K; Xu S; Li Y; Zhang L; Zhang X; Li S Opt Express; 2024 Apr; 32(9):16371-16397. PubMed ID: 38859266 [TBL] [Abstract][Full Text] [Related]
15. Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales. Fergus CE; Finley AO; Soranno PA; Wagner T PLoS One; 2016; 11(10):e0164592. PubMed ID: 27736962 [TBL] [Abstract][Full Text] [Related]
16. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data. Dev PJ; Sukenik A; Mishra DR; Ostrovsky I Sci Total Environ; 2022 Jan; 805():150423. PubMed ID: 34818810 [TBL] [Abstract][Full Text] [Related]
17. A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning. Silveira Kupssinskü L; Thomassim Guimarães T; Menezes de Souza E; C Zanotta D; Roberto Veronez M; Gonzaga L; Mauad FF Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32283787 [TBL] [Abstract][Full Text] [Related]
18. Retrieving Inland Reservoir Water Quality Parameters Using Landsat 8-9 OLI and Sentinel-2 MSI Sensors with Empirical Multivariate Regression. Meng H; Zhang J; Zheng Z Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805386 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of machine learning methods for prediction of chlorophyll-a in a river with different hydrology characteristics: A case study in Fuchun River, China. Yang J; Zheng Y; Zhang W; Zhou Y; Zhang Y J Environ Manage; 2024 Jul; 364():121386. PubMed ID: 38865920 [TBL] [Abstract][Full Text] [Related]
20. Predicting water quality variability in a Mediterranean hypereutrophic monomictic reservoir using Sentinel 2 MSI: the importance of considering model functional form. Abbas M; Alameddine I Environ Monit Assess; 2023 Jul; 195(8):923. PubMed ID: 37410180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]