BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37287344)

  • 21. In vitro activity of a new broad-spectrum, beta-lactamase-stable oral cephalosporin, cefixime, in comparison with other drugs, against Haemophilus influenzae, Haemophilus parainfluenzae, Moraxella catarrhalis and Streptococcus pneumoniae.
    Stefani S; Pellegrino MB; D'Amico G; Privitera A; Privitera O; Maccarrone G; Russo G; Nicoletti G
    Chemotherapy; 1992; 38(1):36-45. PubMed ID: 1618002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lower Airway Bacterial Colonization Patterns and Species-Specific Interactions in Chronic Obstructive Pulmonary Disease.
    Jacobs DM; Ochs-Balcom HM; Zhao J; Murphy TF; Sethi S
    J Clin Microbiol; 2018 Oct; 56(10):. PubMed ID: 30045868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of bacterial strain acquisition in the lung of patients with COPD: the AERIS study.
    Malvisi L; Yarraguntla A; Mortier MC; Osman K; Cleary DW; Sente B; Pascal TG; Weynants V; Clarke SC; Taddei L; Wilkinson TMA; Devaster JM; Devos N;
    Infect Dis (Lond); 2022 Nov; 54(11):784-793. PubMed ID: 35794793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of bacterial infection on airway antimicrobial peptides and proteins in COPD.
    Parameswaran GI; Sethi S; Murphy TF
    Chest; 2011 Sep; 140(3):611-617. PubMed ID: 21349930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Airway Bacteria Quantification Using Polymerase Chain Reaction Combined with Neutrophil and Eosinophil Counts Identifies Distinct COPD Endotypes.
    Beech A; Lea S; Li J; Jackson N; Mulvanny A; Singh D
    Biomedicines; 2021 Sep; 9(10):. PubMed ID: 34680454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimicrobial susceptibility of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella (Branhamella) catarrhalis isolated in the UK from sputa.
    Powell M; McVey D; Kassim MH; Chen HY; Williams JD
    J Antimicrob Chemother; 1991 Aug; 28(2):249-59. PubMed ID: 1778856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Refined View of Airway Microbiome in Chronic Obstructive Pulmonary Disease at Species and Strain-Levels.
    Wang Z; Liu H; Wang F; Yang Y; Wang X; Chen B; Stampfli MR; Zhou H; Shu W; Brightling CE; Liang Z; Chen R
    Front Microbiol; 2020; 11():1758. PubMed ID: 32849386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunological characterisation of truncated lipooligosaccharide-outer membrane protein based conjugate vaccine against Moraxella catarrhalis and nontypeable Haemophilus influenzae.
    Singh S; Wilson JC; Cripps AW; Massa H; Ozberk V; Grice ID; Peak IR
    Vaccine; 2020 Jan; 38(2):309-317. PubMed ID: 31668366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro activity of loracarbef (LY163892), a new oral carbacephem antimicrobial agent, against respiratory isolates of Haemophilus influenzae and Moraxella catarrhalis.
    Doern GV; Vautour R; Parker D; Tubert T; Torres B
    Antimicrob Agents Chemother; 1991 Jul; 35(7):1504-7. PubMed ID: 1929318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function.
    Bafadhel M; Haldar K; Barker B; Patel H; Mistry V; Barer MR; Pavord ID; Brightling CE
    Int J Chron Obstruct Pulmon Dis; 2015; 10():1075-83. PubMed ID: 26089657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Indonesian children: A cross-sectional study.
    Dunne EM; Murad C; Sudigdoadi S; Fadlyana E; Tarigan R; Indriyani SAK; Pell CL; Watts E; Satzke C; Hinds J; Dewi NE; Yani FF; Rusmil K; Mulholland EK; Kartasasmita C
    PLoS One; 2018; 13(4):e0195098. PubMed ID: 29649269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carcinoembryonic antigen (CEA)-related cell adhesion molecules are co-expressed in the human lung and their expression can be modulated in bronchial epithelial cells by non-typable Haemophilus influenzae, Moraxella catarrhalis, TLR3, and type I and II interferons.
    Klaile E; Klassert TE; Scheffrahn I; Müller MM; Heinrich A; Heyl KA; Dienemann H; Grünewald C; Bals R; Singer BB; Slevogt H
    Respir Res; 2013 Aug; 14(1):85. PubMed ID: 23941132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Safety and immunogenicity of non-typeable Haemophilus influenzae-Moraxella catarrhalis vaccine.
    Van Damme P; Leroux-Roels G; Vandermeulen C; De Ryck I; Tasciotti A; Dozot M; Moraschini L; Testa M; Arora AK
    Vaccine; 2019 May; 37(23):3113-3122. PubMed ID: 31029515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimicrobial susceptibility of Haemophilus influenzae, Haemophilus parainfluenzae and Moraxella catarrhalis isolated from adult patients with respiratory tract infections in four southern European countries. The ARISE project.
    Soriano F; Granizo JJ; Coronel P; Gimeno M; Ródenas E; Gracia M; García C; Fernández-Roblas R; Esteban J; Gadea I
    Int J Antimicrob Agents; 2004 Mar; 23(3):296-9. PubMed ID: 15164972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antimicrobial resistance in Haemophilus influenzae and Moraxella catarrhalis respiratory tract isolates: results of the Canadian Respiratory Organism Susceptibility Study, 1997 to 2002.
    Zhanel GG; Palatnick L; Nichol KA; Low DE; Hoban DJ;
    Antimicrob Agents Chemother; 2003 Jun; 47(6):1875-81. PubMed ID: 12760861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of nasopharyngeal culture in antibiotic prescription for patients with common cold or acute sinusitis.
    Kaiser L; Morabia A; Stalder H; Ricchetti A; Auckenthaler R; Terrier F; Hirschel B; Khaw N; Lacroix JS; Lew D
    Eur J Clin Microbiol Infect Dis; 2001 Jul; 20(7):445-51. PubMed ID: 11561799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of the nasopharyngeal bacterial flora of rhesus macaques: moraxella, Neisseria, haemophilus, and other genera.
    Bowers LC; Purcell JE; Plauché GB; Denoel PA; Lobet Y; Philipp MT
    J Clin Microbiol; 2002 Nov; 40(11):4340-2. PubMed ID: 12409426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Comparison of culture and polymerase chain reaction methods for the detection of Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis in cerebrospinal fluids and middle ear effusions].
    Jbara I; Baysallar M; Kiliç A; Yetişer S; Unay B; Açikel C; Yapar M; Doğanci L
    Mikrobiyol Bul; 2007 Oct; 41(4):495-502. PubMed ID: 18173067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Serotype distribution and drug resistance of
    Tian HL; Shi W; Zhou HF; Yuan L; Yao KH; Rexiati D; Xu AM
    Zhonghua Er Ke Za Zhi; 2018 Apr; 56(4):279-283. PubMed ID: 29614568
    [No Abstract]   [Full Text] [Related]  

  • 40. Complement evasion by the human respiratory tract pathogens Haemophilus influenzae and Moraxella catarrhalis.
    Riesbeck K
    FEBS Lett; 2020 Aug; 594(16):2586-2597. PubMed ID: 32053211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.