BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 37287464)

  • 1. Genome organization and genomics in
    Luu LDW; Kasimov V; Phillips S; Myers GSA; Jelocnik M
    Front Cell Infect Microbiol; 2023; 13():1178736. PubMed ID: 37287464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive genome analysis and comparisons of the swine pathogen, Chlamydia suis reveals unique ORFs and candidate host-specificity factors.
    Dimond ZE; Hefty PS
    Pathog Dis; 2021 Mar; 79(2):. PubMed ID: 32639528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39.
    Read TD; Brunham RC; Shen C; Gill SR; Heidelberg JF; White O; Hickey EK; Peterson J; Utterback T; Berry K; Bass S; Linher K; Weidman J; Khouri H; Craven B; Bowman C; Dodson R; Gwinn M; Nelson W; DeBoy R; Kolonay J; McClarty G; Salzberg SL; Eisen J; Fraser CM
    Nucleic Acids Res; 2000 Mar; 28(6):1397-406. PubMed ID: 10684935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-Genome Enrichment and Sequencing of Chlamydia trachomatis Directly from Patient Clinical Vaginal and Rectal Swabs.
    Bowden KE; Joseph SJ; Cartee JC; Ziklo N; Danavall D; Raphael BH; Read TD; Dean D
    mSphere; 2021 Mar; 6(2):. PubMed ID: 33658279
    [No Abstract]   [Full Text] [Related]  

  • 5. Whole-Genome Enrichment Using RNA Probes and Sequencing of Chlamydia trachomatis Directly from Clinical Samples.
    Brown AC; Christiansen MT
    Methods Mol Biol; 2017; 1616():1-22. PubMed ID: 28600759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Genome Sequencing of Chlamydia trachomatis Directly from Human Samples.
    Brown AC; Christiansen MT
    Methods Mol Biol; 2019; 2042():45-67. PubMed ID: 31385270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens.
    Voigt A; Schöfl G; Saluz HP
    PLoS One; 2012; 7(4):e35097. PubMed ID: 22506068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution, phylogeny, and molecular epidemiology of Chlamydia.
    Nunes A; Gomes JP
    Infect Genet Evol; 2014 Apr; 23():49-64. PubMed ID: 24509351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Coming of Age Story: Chlamydia in the Post-Genetic Era.
    Hooppaw AJ; Fisher DJ
    Infect Immun; 2015 Dec; 84(3):612-21. PubMed ID: 26667838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
    Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD
    Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans.
    Joseph SJ; Marti H; Didelot X; Castillo-Ramirez S; Read TD; Dean D
    Genome Biol Evol; 2015 Oct; 7(11):3070-84. PubMed ID: 26507799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia genomics: providing novel insights into chlamydial biology.
    Bachmann NL; Polkinghorne A; Timms P
    Trends Microbiol; 2014 Aug; 22(8):464-72. PubMed ID: 24882432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The many faces of chlamydiae.
    Ngeow Y
    Malays J Pathol; 2000 Dec; 22(2):55-64. PubMed ID: 16329536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria.
    Taylor-Brown A; Pillonel T; Bridle A; Qi W; Bachmann NL; Miller TL; Greub G; Nowak B; Seth-Smith HMB; Vaughan L; Polkinghorne A
    Environ Microbiol; 2017 May; 19(5):1899-1913. PubMed ID: 28205377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight in the biology of Chlamydia-related bacteria.
    Bayramova F; Jacquier N; Greub G
    Microbes Infect; 2018; 20(7-8):432-440. PubMed ID: 29269129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence.
    Brothwell JA; Muramatsu MK; Zhong G; Nelson DE
    Curr Top Microbiol Immunol; 2018; 412():133-158. PubMed ID: 29090367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis.
    Banerjee A; Nelson DE
    Pathog Dis; 2021 May; 79(5):. PubMed ID: 33930127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples.
    Christiansen MT; Brown AC; Kundu S; Tutill HJ; Williams R; Brown JR; Holdstock J; Holland MJ; Stevenson S; Dave J; Tong CY; Einer-Jensen K; Depledge DP; Breuer J
    BMC Infect Dis; 2014 Nov; 14():591. PubMed ID: 25388670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis: small genome, big challenges.
    Thomson NR; Clarke IN
    Future Microbiol; 2010 Apr; 5(4):555-61. PubMed ID: 20353297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of Persistent Infections and Genome Stability by Whole-Genome Sequencing of Repeat-Positive, Same-Serovar Chlamydia trachomatis Collected From the Female Genital Tract.
    Suchland RJ; Dimond ZE; Putman TE; Rockey DD
    J Infect Dis; 2017 Jun; 215(11):1657-1665. PubMed ID: 28368459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.