These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37288522)

  • 1. Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia.
    Ortega-Julia J; Ortega D; Leliaert J
    Nanoscale; 2023 Jun; 15(24):10342-10350. PubMed ID: 37288522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical Magnetic Response of Iron Oxide Nanoparticles Inside Live Cells.
    Cabrera D; Coene A; Leliaert J; Artés-Ibáñez EJ; Dupré L; Telling ND; Teran FJ
    ACS Nano; 2018 Mar; 12(3):2741-2752. PubMed ID: 29508990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy.
    Dias CSB; Hanchuk TDM; Wender H; Shigeyosi WT; Kobarg J; Rossi AL; Tanaka MN; Cardoso MB; Garcia F
    Sci Rep; 2017 Nov; 7(1):14843. PubMed ID: 29093500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliable evaluation method of heating power of magnetic nanofluids to directly predict the tumor temperature during hyperthermia.
    Kim JW; Bae S
    Sci Rep; 2021 Nov; 11(1):22028. PubMed ID: 34764326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor.
    Mukherjee A; Castanares M; Hedayati M; Wabler M; Trock B; Kulkarni P; Rodriguez R; Getzenberg RH; DeWeese TL; Ivkov R; Lupold SE
    Nanomedicine (Lond); 2014 Dec; 9(18):2729-43. PubMed ID: 24547783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia.
    Demessie AA; Park Y; Singh P; Moses AS; Korzun T; Sabei FY; Albarqi HA; Campos L; Wyatt CR; Farsad K; Dhagat P; Sun C; Taratula OR; Taratula O
    Small Methods; 2022 Dec; 6(12):e2200916. PubMed ID: 36319445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.
    Martinez-Boubeta C; Simeonidis K; Makridis A; Angelakeris M; Iglesias O; Guardia P; Cabot A; Yedra L; Estradé S; Peiró F; Saghi Z; Midgley PA; Conde-Leborán I; Serantes D; Baldomir D
    Sci Rep; 2013; 3():1652. PubMed ID: 23576006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.
    Branquinho LC; Carrião MS; Costa AS; Zufelato N; Sousa MH; Miotto R; Ivkov R; Bakuzis AF
    Sci Rep; 2013 Oct; 3():2887. PubMed ID: 24096272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?
    Carrião MS; Bakuzis AF
    Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on hyperthermia via nanoparticle-mediated therapy.
    Sohail A; Ahmad Z; Bég OA; Arshad S; Sherin L
    Bull Cancer; 2017 May; 104(5):452-461. PubMed ID: 28385267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heating efficiency of magnetic nanoparticles under an alternating magnetic field.
    Yu X; Yang R; Wu C; Liu B; Zhang W
    Sci Rep; 2022 Sep; 12(1):16055. PubMed ID: 36163493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent heating efficiency of magnetic nanoparticles for applications in precision nanomedicine.
    Barrera G; Allia P; Tiberto P
    Nanoscale; 2020 Mar; 12(11):6360-6377. PubMed ID: 32134414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailored cancer therapy by magnetic nanoparticle hyperthermia: A virtual scenario simulation method.
    Montes-Robles R; Montanaro H; Capstick M; Ibáñez-Civera J; Masot-Peris R; García-Breijo E; Laguarda-Miró N; Martínez-Máñez R
    Comput Methods Programs Biomed; 2022 Nov; 226():107185. PubMed ID: 36279641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges.
    Raouf I; Khalid S; Khan A; Lee J; Kim HS; Kim MH
    J Therm Biol; 2020 Jul; 91():102644. PubMed ID: 32716885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.