These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37289058)
1. Diploid Nuclei Occur throughout the Life Cycles of Pucciniales Fungi. Talhinhas P; Carvalho R; Tavares S; Ribeiro T; Azinheira H; Ramos AP; Silva MDC; Monteiro M; Loureiro J; Morais-Cecílio L Microbiol Spectr; 2023 Aug; 11(4):e0153223. PubMed ID: 37289058 [TBL] [Abstract][Full Text] [Related]
2. Annotation survey and life cycle transcriptomics of transcription factors in rust fungi (Pucciniales) identify a possible role for cold shock proteins in dormancy exit. Louet C; Blot C; Shelest E; Guerillot P; Salamov A; Zannini F; Pétrowski J; Grigoriev IV; Frey P; Duplessis S Fungal Genet Biol; 2022 Jul; 161():103698. PubMed ID: 35483517 [TBL] [Abstract][Full Text] [Related]
3. Genome size analyses of Pucciniales reveal the largest fungal genomes. Tavares S; Ramos AP; Pires AS; Azinheira HG; Caldeirinha P; Link T; Abranches R; Silva Mdo C; Voegele RT; Loureiro J; Talhinhas P Front Plant Sci; 2014; 5():422. PubMed ID: 25206357 [TBL] [Abstract][Full Text] [Related]
4. Deconstructing the evolutionary complexity between rust fungi ( Aime MC; Bell CD; Wilson AW Stud Mycol; 2018 Mar; 89():143-152. PubMed ID: 29910520 [TBL] [Abstract][Full Text] [Related]
5. Flow cytometry reveals that the rust fungus, Uromyces bidentis (Pucciniales), possesses the largest fungal genome reported--2489 Mbp. Ramos AP; Tavares S; Tavares D; Silva Mdo C; Loureiro J; Talhinhas P Mol Plant Pathol; 2015 Dec; 16(9):1006-10. PubMed ID: 25784533 [TBL] [Abstract][Full Text] [Related]
6. The evolution of haploid, diploid and polymorphic haploid-diploid life cycles: the role of meiotic mutation. Hall DW Genetics; 2000 Oct; 156(2):893-8. PubMed ID: 11014834 [TBL] [Abstract][Full Text] [Related]
7. A Remarkable Expansion of Oligopeptide Transporter Genes in Rust Fungi (Pucciniales) Suggests a Specialization in Nutrient Acquisition for Obligate Biotrophy. Guerillot P; Salamov A; Louet C; Morin E; Frey P; Grigoriev IV; Duplessis S Phytopathology; 2023 Feb; 113(2):252-264. PubMed ID: 36044359 [TBL] [Abstract][Full Text] [Related]
8. Estimating the Fitness Effect of Deleterious Mutations During the Two Phases of the Life Cycle: A New Method Applied to the Root-Rot Fungus Clergeot PH; Rode NO; Glémin S; Brandström Durling M; Ihrmark K; Olson Å Genetics; 2019 Mar; 211(3):963-976. PubMed ID: 30598467 [TBL] [Abstract][Full Text] [Related]
9. Foraminifera as a model of eukaryotic genome dynamism. Timmons C; Le K; Rappaport HB; Sterner EG; Maurer-Alcalá XX; Goldstein ST; Katz LA mBio; 2024 Mar; 15(3):e0337923. PubMed ID: 38329358 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. von Dassow P; Ogata H; Probert I; Wincker P; Da Silva C; Audic S; Claverie JM; de Vargas C Genome Biol; 2009; 10(10):R114. PubMed ID: 19832986 [TBL] [Abstract][Full Text] [Related]
11. Gapless Genome Assembly of Puccinia triticina Provides Insights into Chromosome Evolution in Pucciniales. Li C; Qiao L; Lu Y; Xing G; Wang X; Zhang G; Qian H; Shen Y; Zhang Y; Yao W; Cheng K; Ma Z; Liu N; Wang D; Zheng W Microbiol Spectr; 2023 Feb; 11(1):e0282822. PubMed ID: 36688678 [TBL] [Abstract][Full Text] [Related]
12. Host Adaptation and Virulence in Heteroecious Rust Fungi. Duplessis S; Lorrain C; Petre B; Figueroa M; Dodds PN; Aime MC Annu Rev Phytopathol; 2021 Aug; 59():403-422. PubMed ID: 34077239 [TBL] [Abstract][Full Text] [Related]
13. Diploid-dominant life cycles characterize the early evolution of Fungi. Amses KR; Simmons DR; Longcore JE; Mondo SJ; Seto K; Jerônimo GH; Bonds AE; Quandt CA; Davis WJ; Chang Y; Federici BA; Kuo A; LaButti K; Pangilinan J; Andreopoulos W; Tritt A; Riley R; Hundley H; Johnson J; Lipzen A; Barry K; Lang BF; Cuomo CA; Buchler NE; Grigoriev IV; Spatafora JW; Stajich JE; James TY Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2116841119. PubMed ID: 36037379 [TBL] [Abstract][Full Text] [Related]
14. Modeling the consequences of the dikaryotic life cycle of mushroom-forming fungi on genomic conflict. Auxier B; Czárán TL; Aanen DK Elife; 2022 Apr; 11():. PubMed ID: 35441591 [TBL] [Abstract][Full Text] [Related]
15. Sexual reproduction is the null hypothesis for life cycles of rust fungi. McTaggart AR; James TY; Idnurm A; Park RF; Shuey LS; Demers MNK; Aime MC PLoS Pathog; 2022 May; 18(5):e1010439. PubMed ID: 35617196 [TBL] [Abstract][Full Text] [Related]
16. Exploring the Genetic Consequences of Clonality in Haplodiplontic Taxa. Krueger-Hadfield SA; Guillemin ML; Destombe C; Valero M; Stoeckel S J Hered; 2021 Mar; 112(1):92-107. PubMed ID: 33511982 [TBL] [Abstract][Full Text] [Related]
17. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Chen W; Wellings C; Chen X; Kang Z; Liu T Mol Plant Pathol; 2014 Jun; 15(5):433-46. PubMed ID: 24373199 [TBL] [Abstract][Full Text] [Related]
18. Unholy marriages and eternal triangles: how competition in the mushroom life cycle can lead to genomic conflict. Vreeburg S; Nygren K; Aanen DK Philos Trans R Soc Lond B Biol Sci; 2016 Oct; 371(1706):. PubMed ID: 27619697 [TBL] [Abstract][Full Text] [Related]
19. [Mating types, sexual reproduction and ploidy in fungi: effects on virulence]. Cerikçioğlu N Mikrobiyol Bul; 2009 Jul; 43(3):507-13. PubMed ID: 19795629 [TBL] [Abstract][Full Text] [Related]
20. Maintenance of Complex Life Cycles Via Cryptic Differences In The Ecophysiology Of Haploid And Diploid Spores Of An Isomorphic Red Alga Bellgrove A; Nakaya F; Serisawa Y; Matsuyama-Serisawa K; Kagami Y; Jones PM; Suzuki H; Kawano S; Aoki MN J Phycol; 2020 Feb; 56(1):159-169. PubMed ID: 31595519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]