These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Machine learning transferable atomic forces for large systems from underconverged molecular fragments. Herbold M; Behler J Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873 [TBL] [Abstract][Full Text] [Related]
8. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials. Omranpour A; Montero De Hijes P; Behler J; Dellago C J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006 [TBL] [Abstract][Full Text] [Related]
9. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials. Herbold M; Behler J J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596 [TBL] [Abstract][Full Text] [Related]
10. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks. Sun G; Sautet P J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216 [TBL] [Abstract][Full Text] [Related]
11. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration. Kang PL; Shang C; Liu ZP Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999 [TBL] [Abstract][Full Text] [Related]
12. How to train a neural network potential. Tokita AM; Behler J J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127396 [TBL] [Abstract][Full Text] [Related]
13. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials. Zaverkin V; Kästner J J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968 [TBL] [Abstract][Full Text] [Related]
16. An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing Herman KM; Xantheas SS Phys Chem Chem Phys; 2023 Mar; 25(10):7120-7143. PubMed ID: 36853239 [TBL] [Abstract][Full Text] [Related]
17. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. Fan Z; Wang Y; Ying P; Song K; Wang J; Wang Y; Zeng Z; Xu K; Lindgren E; Rahm JM; Gabourie AJ; Liu J; Dong H; Wu J; Chen Y; Zhong Z; Sun J; Erhart P; Su Y; Ala-Nissila T J Chem Phys; 2022 Sep; 157(11):114801. PubMed ID: 36137808 [TBL] [Abstract][Full Text] [Related]
18. A novel approach to describe chemical environments in high-dimensional neural network potentials. Kocer E; Mason JK; Erturk H J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106 [TBL] [Abstract][Full Text] [Related]
19. Learning Atomic Multipoles: Prediction of the Electrostatic Potential with Equivariant Graph Neural Networks. Thürlemann M; Böselt L; Riniker S J Chem Theory Comput; 2022 Mar; 18(3):1701-1710. PubMed ID: 35112866 [TBL] [Abstract][Full Text] [Related]
20. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. Eckhoff M; Behler J J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]