These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37289440)

  • 21. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrostatically embedded many-body method for dipole moments, partial atomic charges, and charge transfer.
    Leverentz HR; Maerzke KA; Keasler SJ; Siepmann JI; Truhlar DG
    Phys Chem Chem Phys; 2012 Jun; 14(21):7669-78. PubMed ID: 22425812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stable and accurate atomistic simulations of flexible molecules using conformationally generalisable machine learned potentials.
    Williams CD; Kalayan J; Burton NA; Bryce RA
    Chem Sci; 2024 Aug; 15(32):12780-12795. PubMed ID: 39148799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks.
    Tsubaki M; Mizoguchi T
    J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning of Reactive Potentials.
    Yang Y; Zhang S; Ranasinghe KD; Isayev O; Roitberg AE
    Annu Rev Phys Chem; 2024 Jun; 75(1):371-395. PubMed ID: 38941524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials.
    Glick ZL; Metcalf DP; Koutsoukas A; Spronk SA; Cheney DL; Sherrill CD
    J Chem Phys; 2020 Jul; 153(4):044112. PubMed ID: 32752707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Universal machine learning for the response of atomistic systems to external fields.
    Zhang Y; Jiang B
    Nat Commun; 2023 Oct; 14(1):6424. PubMed ID: 37827998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatically embedded molecules-in-molecules approach and its application to molecular clusters.
    Tripathy V; Saha A; Raghavachari K
    J Comput Chem; 2021 Apr; 42(10):719-734. PubMed ID: 33586802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules.
    Fox SJ; Pittock C; Fox T; Tautermann CS; Malcolm N; Skylaris CK
    J Chem Phys; 2011 Dec; 135(22):224107. PubMed ID: 22168680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local-environment-guided selection of atomic structures for the development of machine-learning potentials.
    Li R; Zhou C; Singh A; Pei Y; Henkelman G; Li L
    J Chem Phys; 2024 Feb; 160(7):. PubMed ID: 38380745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning Interatomic Potentials and Long-Range Physics.
    Anstine DM; Isayev O
    J Phys Chem A; 2023 Mar; 127(11):2417-2431. PubMed ID: 36802360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions.
    Pan X; Yang J; Van R; Epifanovsky E; Ho J; Huang J; Pu J; Mei Y; Nam K; Shao Y
    J Chem Theory Comput; 2021 Sep; 17(9):5745-5758. PubMed ID: 34468138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of hyper-parameters in the atomic descriptors for efficient and robust molecular dynamics simulations with machine learning forces.
    Lin J; Tamura R; Futamura Y; Sakurai T; Miyazaki T
    Phys Chem Chem Phys; 2023 Jul; 25(27):17978-17986. PubMed ID: 37377109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Quantum Chemical Topology Picture of Intermolecular Electrostatic Interactions and Charge Penetration Energy.
    Jiménez-Grávalos F; Suárez D
    J Chem Theory Comput; 2021 Aug; 17(8):4981-4995. PubMed ID: 34279923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QMLMaterial─A Quantum Machine Learning Software for Material Design and Discovery.
    Lourenço MP; Herrera LB; Hostaš J; Calaminici P; Köster AM; Tchagang A; Salahub DR
    J Chem Theory Comput; 2023 Sep; 19(17):5999-6010. PubMed ID: 37581570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dielectric Saturation in Water from a Long-Range Machine Learning Model.
    Dhattarwal HS; Gao A; Remsing RC
    J Phys Chem B; 2023 Apr; 127(16):3663-3671. PubMed ID: 37058285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How machine learning can accelerate electrocatalysis discovery and optimization.
    Steinmann SN; Wang Q; Seh ZW
    Mater Horiz; 2023 Feb; 10(2):393-406. PubMed ID: 36541226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Training machine learning potentials for reactive systems: A Colab tutorial on basic models.
    Pan X; Snyder R; Wang JN; Lander C; Wickizer C; Van R; Chesney A; Xue Y; Mao Y; Mei Y; Pu J; Shao Y
    J Comput Chem; 2024 Apr; 45(10):638-647. PubMed ID: 38082539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.