These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37289440)

  • 41. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron.
    Byggmästar J; Nikoulis G; Fellman A; Granberg F; Djurabekova F; Nordlund K
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35550572
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges.
    Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2009 Jun; 5(6):1573-84. PubMed ID: 26609850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transferability of machine learning potentials: Protonated water neural network potential applied to the protonated water hexamer.
    Schran C; Brieuc F; Marx D
    J Chem Phys; 2021 Feb; 154(5):051101. PubMed ID: 33557570
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DART: deep learning enabled topological interaction model for energy prediction of metal clusters and its application in identifying unique low energy isomers.
    Modee R; Agarwal S; Verma A; Joshi K; Priyakumar UD
    Phys Chem Chem Phys; 2021 Oct; 23(38):21995-22003. PubMed ID: 34569568
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Active sparse Bayesian committee machine potential for isothermal-isobaric molecular dynamics simulations.
    Willow SY; Kim DG; Sundheep R; Hajibabaei A; Kim KS; Myung CW
    Phys Chem Chem Phys; 2024 Aug; 26(33):22073-22082. PubMed ID: 39113586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tell Machine Learning Potentials What They Are Needed For: Simulation-Oriented Training Exemplified for Glycine.
    Ge F; Wang R; Qu C; Zheng P; Nandi A; Conte R; Houston PL; Bowman JM; Dral PO
    J Phys Chem Lett; 2024 Apr; 15(16):4451-4460. PubMed ID: 38626460
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TrIP─Transformer Interatomic Potential Predicts Realistic Energy Surface Using Physical Bias.
    Hedelius BE; Tingey D; Della Corte D
    J Chem Theory Comput; 2024 Jan; 20(1):199-211. PubMed ID: 38150692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A dual-cutoff machine-learned potential for condensed organic systems obtained
    Kahle L; Minisini B; Bui T; First JT; Buda C; Goldman T; Wimmer E
    Phys Chem Chem Phys; 2024 Aug; 26(34):22665-22680. PubMed ID: 39158948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations.
    Friedrich J; Yu H; Leverentz HR; Bai P; Siepmann JI; Truhlar DG
    J Phys Chem Lett; 2014 Feb; 5(4):666-70. PubMed ID: 26270834
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrostatic Embedding of Machine Learning Potentials.
    Zinovjev K
    J Chem Theory Comput; 2023 Mar; 19(6):1888-1897. PubMed ID: 36821513
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MLSolvA: solvation free energy prediction from pairwise atomistic interactions by machine learning.
    Lim H; Jung Y
    J Cheminform; 2021 Jul; 13(1):56. PubMed ID: 34332634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks.
    Nebgen B; Lubbers N; Smith JS; Sifain AE; Lokhov A; Isayev O; Roitberg AE; Barros K; Tretiak S
    J Chem Theory Comput; 2018 Sep; 14(9):4687-4698. PubMed ID: 30064217
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Representing potential energy surfaces by high-dimensional neural network potentials.
    Behler J
    J Phys Condens Matter; 2014 May; 26(18):183001. PubMed ID: 24758952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations.
    Behler J
    Phys Chem Chem Phys; 2011 Oct; 13(40):17930-55. PubMed ID: 21915403
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Partial Atomic Charges and Screened Charge Models of the Electrostatic Potential.
    Wang B; Truhlar DG
    J Chem Theory Comput; 2012 Jun; 8(6):1989-98. PubMed ID: 26593833
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ab initio molecular dynamics and high-dimensional neural network potential study of VZrNbHfTa melt.
    Balyakin IA; Yuryev AA; Gelchinski BR; Rempel AA
    J Phys Condens Matter; 2020 May; 32(21):214006. PubMed ID: 31978911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.