These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37289559)

  • 1. Nonconjugated Redox-Active Polymers: Electron Transfer Mechanisms, Energy Storage, and Chemical Versatility.
    Ma T; Easley AD; Thakur RM; Mohanty KT; Wang C; Lutkenhaus JL
    Annu Rev Chem Biomol Eng; 2023 Jun; 14():187-216. PubMed ID: 37289559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.
    Burgess M; Moore JS; Rodríguez-López J
    Acc Chem Res; 2016 Nov; 49(11):2649-2657. PubMed ID: 27673336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit.
    Kaneko M; Ishihara K; Nakanishi S
    Small; 2020 Aug; 16(34):e2001849. PubMed ID: 32734709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable Radical Materials for Energy Applications.
    Wilcox DA; Agarkar V; Mukherjee S; Boudouris BW
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():83-103. PubMed ID: 29579403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Redox-Active Catechol-Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage.
    Patil N; Aqil A; Ouhib F; Admassie S; Inganäs O; Jérôme C; Detrembleur C
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28869678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
    Sakaushi K; Nishihara H
    Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents.
    Nagarjuna G; Hui J; Cheng KJ; Lichtenstein T; Shen M; Moore JS; Rodríguez-López J
    J Am Chem Soc; 2014 Nov; 136(46):16309-16. PubMed ID: 25325703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling Charge Percolation in Solutions of Metal Redox Active Polymers: Implications of Microscopic Polyelectrolyte Dynamics on Macroscopic Energy Storage.
    Romo AIB; Bello L; Pudar S; Ibrahim N; Wang Y; Baran MJ; Wu Q; Ewoldt RH; Helms BA; Sing C; Rodríguez-López J
    J Am Chem Soc; 2024 Jun; 146(25):17474-17486. PubMed ID: 38860830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes.
    Ma T; Li CH; Thakur RM; Tabor DP; Lutkenhaus JL
    Nat Mater; 2023 Apr; 22(4):495-502. PubMed ID: 36973544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices.
    Hatakeyama-Sato K; Oyaizu K
    Chem Rev; 2023 Oct; 123(19):11336-11391. PubMed ID: 37695670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage.
    Wang A; Tan R; Breakwell C; Wei X; Fan Z; Ye C; Malpass-Evans R; Liu T; Zwijnenburg MA; Jelfs KE; McKeown NB; Chen J; Song Q
    J Am Chem Soc; 2022 Sep; 144(37):17198-17208. PubMed ID: 36074146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ NMR metrology reveals reaction mechanisms in redox flow batteries.
    Zhao EW; Liu T; Jónsson E; Lee J; Temprano I; Jethwa RB; Wang A; Smith H; Carretero-González J; Song Q; Grey CP
    Nature; 2020 Mar; 579(7798):224-228. PubMed ID: 32123353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polysulfide Catalytic Materials for Fast-Kinetic Metal-Sulfur Batteries: Principles and Active Centers.
    Cheng M; Yan R; Yang Z; Tao X; Ma T; Cao S; Ran F; Li S; Yang W; Cheng C
    Adv Sci (Weinh); 2022 Jan; 9(2):e2102217. PubMed ID: 34766470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic Polysulfide Chemistries for Better Energy Storage Systems.
    Li X; Sun X; Xiao B; Wang D; Liang J
    Acc Chem Res; 2023 Dec; 56(24):3547-3557. PubMed ID: 38060813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected Boosted Solar Water Oxidation by Nonconjugated Polymer-Mediated Tandem Charge Transfer.
    Wei ZQ; Hou S; Lin X; Xu S; Dai XC; Li YH; Li JY; Xiao FX; Xu YJ
    J Am Chem Soc; 2020 Dec; 142(52):21899-21912. PubMed ID: 33322903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material.
    Casado N; Mantione D; Shanmukaraj D; Mecerreyes D
    ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.