These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37289675)

  • 1. Comparing end-effector position and joint angle feedback for online robotic limb tracking.
    Pinardi M; Noccaro A; Raiano L; Formica D; Di Pino G
    PLoS One; 2023; 18(6):e0286566. PubMed ID: 37289675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space.
    Valdes BA; Khoshnam M; Neva JL; Menon C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():121-126. PubMed ID: 31374617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint Speed Discrimination and Augmentation For Prosthesis Feedback.
    Earley EJ; Johnson RE; Hargrove LJ; Sensinger JW
    Sci Rep; 2018 Dec; 8(1):17752. PubMed ID: 30531829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility and Usability of Two Forms of Supplemental Vibrotactile Kinesthetic Feedback for Enhancing Movement Accuracy and Efficiency in Goal-Directed Reaching.
    Rayes RK; Mazorow RN; Mrotek LA; Scheidt RA
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotics-assisted visual-motor training influences arm position sense in three-dimensional space.
    Valdés BA; Khoshnam M; Neva JL; Menon C
    J Neuroeng Rehabil; 2020 Jul; 17(1):96. PubMed ID: 32664955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force feedback facilitates multisensory integration during robotic tool use.
    Sengül A; Rognini G; van Elk M; Aspell JE; Bleuler H; Blanke O
    Exp Brain Res; 2013 Jun; 227(4):497-507. PubMed ID: 23625046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Impact of Machine-Learned Predictions on Feedback from an Artificial Limb.
    Parker ASR; Edwards AL; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1239-1246. PubMed ID: 31374799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supplemental vibrotactile feedback of real-time limb position enhances precision of goal-directed reaching.
    Risi N; Shah V; Mrotek LA; Casadio M; Scheidt RA
    J Neurophysiol; 2019 Jul; 122(1):22-38. PubMed ID: 30995149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic somatosensory feedback supports motor control and learning to operate artificial body parts.
    Amoruso E; Dowdall L; Kollamkulam MT; Ukaegbu O; Kieliba P; Ng T; Dempsey-Jones H; Clode D; Makin TR
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34983040
    [No Abstract]   [Full Text] [Related]  

  • 17. Assessing kinesthetic proprioceptive function of the upper limb: a novel dynamic movement reproduction task using a robotic arm.
    Vandael K; Stanton TR; Meulders A
    PeerJ; 2021; 9():e11301. PubMed ID: 33987004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vibrotactile feedback on human learning of arm motions.
    Bark K; Hyman E; Tan F; Cha E; Jax SA; Buxbaum LJ; Kuchenbecker KJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):51-63. PubMed ID: 25486644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-space control of prosthetic hand shape.
    Velliste M; McMorland AJ; Diril E; Clanton ST; Schwartz AB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():964-7. PubMed ID: 23366054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.