BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3728979)

  • 1. A class of cleavable heterobifunctional reagents for thiol-directed high-efficiency protein crosslinking: synthesis and application to the analysis of protein contact sites in mammalian ribosomes.
    Hultin T
    Anal Biochem; 1986 Jun; 155(2):262-9. PubMed ID: 3728979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective high-efficiency cross-linking of mammalian ribosomal proteins with cleavable thiol-directed heterobifunctional reagents: identification and binding directions of major protein complexes.
    Hultin T
    Biochim Biophys Acta; 1986 Aug; 872(3):226-35. PubMed ID: 3730400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective high-efficiency cross-linking of mammalian ribosomal proteins with cleavable thiol-directed heterobifunctional reagents: separation and identification of contact sequences of neighboring proteins after CNBr fragmentation.
    Hultin T; Nika H
    Biochim Biophys Acta; 1986 Aug; 872(3):236-42. PubMed ID: 3730401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of a cleavable crosslinking reagent to identify neighboring proteins in the 30-S ribosomal subunit of Escherichia coli.
    Peretz H; Towbin H; Elson D
    Eur J Biochem; 1976 Mar; 63(1):83-92. PubMed ID: 770170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New fluorogenic, photoactivable, heterobifunctional crosslinking thiol reagents.
    Ueno T; Hikita S; Muno D; Sato E; Kanaoka Y; Sekine T
    Anal Biochem; 1984 Jul; 140(1):63-8. PubMed ID: 6486417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of N-(3-pyrene)maleimide with thiol groups of reticulocyte ribosomes.
    Lee T; Heintz RL
    Eur J Biochem; 1976 Jun; 66(1):105-14. PubMed ID: 954741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and photoactivation of caged fluorophores and caged proteins using a new class of heterobifunctional, photocleavable cross-linking reagents.
    Ottl J; Gabriel D; Marriott G
    Bioconjug Chem; 1998; 9(2):143-51. PubMed ID: 9548528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of the contact regions of the neighboring mammalian ribosomal proteins L6 and L29. Cyanogen bromide cleavage of the disulfide complex after preparative electrophoresis in non-oxidative polyacrylamide gels.
    Nika H; Hultin T
    Eur J Biochem; 1984 Apr; 140(1):97-104. PubMed ID: 6705800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of immunoconjugates using antibody oligosaccharide moieties.
    Vogel CW
    Methods Mol Biol; 2004; 283():87-108. PubMed ID: 15197304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and applications of heterobifunctional photocleavable cross-linking reagents.
    Marriott G; Ottl J
    Methods Enzymol; 1998; 291():155-75. PubMed ID: 9661150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location of the sulfhydryl groups involved in disulfide interaction between the neighboring proteins L6 and L29 in mammalian ribosomes. S-cleavage of the cyanylated proteins in polyacrylamide gels after separation by dodecylsulfate gel electrophoresis.
    Nika H; Hultin T
    Eur J Biochem; 1984 Aug; 142(3):521-6. PubMed ID: 6468376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein crosslinking reagents containing a selenoethylene linker are cleaved by mild oxidation.
    Buchardt O; Elsner HI; Nielsen PE; Petersen LC; Suenson E
    Anal Biochem; 1986 Oct; 158(1):87-92. PubMed ID: 3026203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagonal polyacrylamide-dodecyl sulfate gel electrophoresis for the identification of ribosomal proteins crosslinked with methyl-4-mercaptobutyrimidate.
    Sommer A; Traut RR
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3946-50. PubMed ID: 4610565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent.
    Cai K; Itoh Y; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4877-82. PubMed ID: 11320237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking.
    Uchiumi T; Wahba AJ; Traut RR
    Proc Natl Acad Sci U S A; 1987 Aug; 84(16):5580-4. PubMed ID: 3475694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and application of cleavable photoactivable heterobifunctional reagents.
    Vanin EF; Ji TH
    Biochemistry; 1981 Nov; 20(24):6754-60. PubMed ID: 7317350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of N-(4-azidophenylthio)phthalimide: A cleavable, photoactivable crosslinking reagent that reacts with sulfhydryl groups.
    Moreland RB; Smith PK; Fujimoto EK; Dockter ME
    Anal Biochem; 1982 Apr; 121(2):321-6. PubMed ID: 6285759
    [No Abstract]   [Full Text] [Related]  

  • 18. New clevable photoreactive heterobifunctional cross-linking reagents for studying membrane organization.
    Jaffe CL; Lis H; Sharon N
    Biochemistry; 1980 Sep; 19(19):4423-9. PubMed ID: 7190840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New protein cross-linking reagents that are cleaved by mild acid.
    Srinivasachar K; Neville DM
    Biochemistry; 1989 Mar; 28(6):2501-9. PubMed ID: 2471550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of a cleavable protein-crosslinking reagent for the investigation of ribosome structure.
    Peretz H; Elson D
    Eur J Biochem; 1976 Mar; 63(1):77-82. PubMed ID: 1261550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.