These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37289843)

  • 1. Mslar: Microbial synthetic lethal and rescue database.
    Zhu SB; Jiang QH; Chen ZG; Zhou X; Jin YT; Deng Z; Guo FB
    PLoS Comput Biol; 2023 Jun; 19(6):e1011218. PubMed ID: 37289843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.
    Guo J; Liu H; Zheng J
    Nucleic Acids Res; 2016 Jan; 44(D1):D1011-7. PubMed ID: 26516187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Link synthetic lethality to drug sensitivity of cancer cells.
    Wang R; Han Y; Zhao Z; Yang F; Chen T; Zhou W; Wang X; Qi L; Zhao W; Guo Z; Gu Y
    Brief Bioinform; 2019 Jul; 20(4):1295-1307. PubMed ID: 29300844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SL-Miner: a web server for mining evidence and prioritization of cancer-specific synthetic lethality.
    Liu X; Hu J; Zheng J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38244572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human synthetic lethal inference as potential anti-cancer target gene detection.
    Conde-Pueyo N; Munteanu A; Solé RV; Rodríguez-Caso C
    BMC Syst Biol; 2009 Dec; 3():116. PubMed ID: 20015360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SynLethDB 2.0: a web-based knowledge graph database on synthetic lethality for novel anticancer drug discovery.
    Wang J; Wu M; Huang X; Wang L; Zhang S; Liu H; Zheng J
    Database (Oxford); 2022 May; 2022():. PubMed ID: 35562840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer.
    Srihari S; Singla J; Wong L; Ragan MA
    Biol Direct; 2015 Oct; 10():57. PubMed ID: 26427375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference.
    Dou Y; Ren Y; Zhao X; Jin J; Xiong S; Luo L; Xu X; Yang X; Yu J; Guo L; Liang T
    Comput Biol Med; 2024 Mar; 170():108066. PubMed ID: 38310806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SLKB: synthetic lethality knowledge base.
    Gökbağ B; Tang S; Fan K; Cheng L; Yu L; Zhao Y; Li L
    Nucleic Acids Res; 2024 Jan; 52(D1):D1418-D1428. PubMed ID: 37889037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.
    Zhu Y; Zhou Y; Liu Y; Wang X; Li J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36645245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL.
    Raman K; Pratapa A; Mohite O; Balachandran S
    Methods Mol Biol; 2018; 1716():315-336. PubMed ID: 29222760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic lethality and the minimal genome size problem.
    Rahiminejad S; De Sanctis B; Pevzner P; Mushegian A
    mSphere; 2024 Jul; 9(7):e0013924. PubMed ID: 38904396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of protein interactions in mediating essentiality and synthetic lethality.
    Talavera D; Robertson DL; Lovell SC
    PLoS One; 2013; 8(4):e62866. PubMed ID: 23638160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics characterization of synthetic lethality-related molecular features: implications for SL-based therapeutic target screening.
    Weng S; Ruan H
    FEBS J; 2023 Mar; 290(6):1477-1480. PubMed ID: 36461713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iTAP: integrated transcriptomics and phenotype database for stress response of Escherichia coli and Saccharomyces cerevisiae.
    Sundararaman N; Ash C; Guo W; Button R; Singh J; Feng X
    BMC Res Notes; 2015 Dec; 8():771. PubMed ID: 26653323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling DNA trapping of anticancer therapeutic targets using missense mutations identifies dominant synthetic lethal interactions.
    Hamza A; Amitzi L; Ma L; Driessen MRM; O'Neil NJ; Hieter P
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens.
    Srivatsa S; Montazeri H; Bianco G; Coto-Llerena M; Marinucci M; Ng CKY; Piscuoglio S; Beerenwinkel N
    Nat Commun; 2022 Dec; 13(1):7748. PubMed ID: 36517508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.