These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37289843)

  • 21. Ranking novel cancer driving synthetic lethal gene pairs using TCGA data.
    Ye H; Zhang X; Chen Y; Liu Q; Wei J
    Oncotarget; 2016 Aug; 7(34):55352-55367. PubMed ID: 27438146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens.
    Srivatsa S; Montazeri H; Bianco G; Coto-Llerena M; Marinucci M; Ng CKY; Piscuoglio S; Beerenwinkel N
    Nat Commun; 2022 Dec; 13(1):7748. PubMed ID: 36517508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An integrative multi-network and multi-classifier approach to predict genetic interactions.
    Pandey G; Zhang B; Chang AN; Myers CL; Zhu J; Kumar V; Schadt EE
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy.
    Choi JE; Chung WH
    J Microbiol; 2019 Jan; 57(1):9-17. PubMed ID: 30594981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Syn-lethality: an integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies.
    Li XJ; Mishra SK; Wu M; Zhang F; Zheng J
    Biomed Res Int; 2014; 2014():196034. PubMed ID: 24864230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DEG: a database of essential genes.
    Zhang R; Ou HY; Zhang CT
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D271-2. PubMed ID: 14681410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MAGICAL: A multi-class classifier to predict synthetic lethal and viable interactions using protein-protein interaction network.
    Dey A; Mudunuri S; Kiran M
    PLoS Comput Biol; 2024 Aug; 20(8):e1012336. PubMed ID: 39186799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the landscape of synthetic lethal interactions in liver cancer.
    Yang C; Guo Y; Qian R; Huang Y; Zhang L; Wang J; Huang X; Liu Z; Qin W; Wang C; Chen H; Ma X; Zhang D
    Theranostics; 2021; 11(18):9038-9053. PubMed ID: 34522226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network.
    Lai M; Chen G; Yang H; Yang J; Jiang Z; Wu M; Zheng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1731-1734. PubMed ID: 34891621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
    Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates.
    Zhang F; Wu M; Li XJ; Li XL; Kwoh CK; Zheng J
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541002. PubMed ID: 25669329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SL-scan identifies synthetic lethal interactions in cancer using metabolic networks.
    Zangene E; Marashi SA; Montazeri H
    Sci Rep; 2023 Sep; 13(1):15763. PubMed ID: 37737478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality.
    Zhang K; Wu M; Liu Y; Feng Y; Zheng J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i158-i167. PubMed ID: 37387166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic plasticity in synthetic lethal mutants: Viability at higher cost.
    Massucci FA; Sagués F; Serrano MÁ
    PLoS Comput Biol; 2018 Jan; 14(1):e1005949. PubMed ID: 29381693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ELISL: early-late integrated synthetic lethality prediction in cancer.
    Tepeli YI; Seale C; Gonçalves JP
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38113447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.
    Huang J; Wu M; Lu F; Ou-Yang L; Zhu Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):657. PubMed ID: 31870274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Enériz E; Valcarcel LV; Agirre X; Prosper F; Planes FJ
    PLoS Comput Biol; 2022 Mar; 18(3):e1009395. PubMed ID: 35286311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
    Liu X; Yu J; Tao S; Yang B; Wang S; Wang L; Bai F; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii106-ii112. PubMed ID: 36124788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.
    Pratapa A; Balachandran S; Raman K
    Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response.
    Pinoli P; Srihari S; Wong L; Ceri S
    BMC Bioinformatics; 2021 May; 22(1):250. PubMed ID: 33992077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.