These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 37290055)

  • 1. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology.
    Fernández-Colino A; Kiessling F; Slabu I; De Laporte L; Akhyari P; Nagel SK; Stingl J; Reese S; Jockenhoevel S
    Adv Healthc Mater; 2023 Aug; 12(20):e2300991. PubMed ID: 37290055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohybrid Design Gets Personal: New Materials for Patient-Specific Therapy.
    Raman R; Langer R
    Adv Mater; 2020 Apr; 32(13):e1901969. PubMed ID: 31271257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in engineering functional biohybrid robots actuated by living cells.
    Gao L; Akhtar MU; Yang F; Ahmad S; He J; Lian Q; Cheng W; Zhang J; Li D
    Acta Biomater; 2021 Feb; 121():29-40. PubMed ID: 33285324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.
    Green DW; Watson GS; Watson JA; Lee DJ; Lee JM; Jung HS
    Acta Biomater; 2016 Sep; 42():33-45. PubMed ID: 27381524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Smart are Smart Materials? A Conceptual and Ethical Analysis of Smart Lifelike Materials for the Design of Regenerative Valve Implants.
    de Kanter AJ; Jongsma KR; Bouten CVC; Bredenoord AL
    Sci Eng Ethics; 2023 Sep; 29(5):33. PubMed ID: 37668955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering.
    Perera AS; Coppens MO
    Philos Trans A Math Phys Eng Sci; 2019 Feb; 377(2138):20180268. PubMed ID: 30967073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohybrid robotics with living cell actuation.
    Sun L; Yu Y; Chen Z; Bian F; Ye F; Sun L; Zhao Y
    Chem Soc Rev; 2020 Jun; 49(12):4043-4069. PubMed ID: 32417875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner.
    Gerardo-Nava JL; Jansen J; Günther D; Klasen L; Thiebes AL; Niessing B; Bergerbit C; Meyer AA; Linkhorst J; Barth M; Akhyari P; Stingl J; Nagel S; Stiehl T; Lampert A; Leube R; Wessling M; Santoro F; Ingebrandt S; Jockenhoevel S; Herrmann A; Fischer H; Wagner W; Schmitt RH; Kiessling F; Kramann R; De Laporte L
    Adv Healthc Mater; 2023 Aug; 12(20):e2301030. PubMed ID: 37311209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Living Materials Herald a New Era in Soft Robotics.
    Appiah C; Arndt C; Siemsen K; Heitmann A; Staubitz A; Selhuber-Unkel C
    Adv Mater; 2019 Sep; 31(36):e1807747. PubMed ID: 31267628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohybrid neural interfaces: improving the biological integration of neural implants.
    Boulingre M; Portillo-Lara R; Green RA
    Chem Commun (Camb); 2023 Dec; 59(100):14745-14758. PubMed ID: 37991846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohybrid robots: recent progress, challenges, and perspectives.
    Webster-Wood VA; Guix M; Xu NW; Behkam B; Sato H; Sarkar D; Sanchez S; Shimizu M; Parker KK
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36265472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design.
    Raman R; Bashir R
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28881469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HASEL Artificial Muscles for a New Generation of Lifelike Robots-Recent Progress and Future Opportunities.
    Rothemund P; Kellaris N; Mitchell SK; Acome E; Keplinger C
    Adv Mater; 2021 May; 33(19):e2003375. PubMed ID: 33166000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications.
    Abdelhamid MAA; Pack SP
    Acta Biomater; 2021 Jan; 120():38-56. PubMed ID: 32447061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetics: forecasting the future of science, engineering, and medicine.
    Hwang J; Jeong Y; Park JM; Lee KH; Hong JW; Choi J
    Int J Nanomedicine; 2015; 10():5701-13. PubMed ID: 26388692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Structural Proteins: Modular Assembly and High Mechanical Performance.
    Zhang X; Li J; Ma C; Zhang H; Liu K
    Acc Chem Res; 2023 Oct; 56(19):2664-2675. PubMed ID: 37738227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications.
    Liu S; Yu JM; Gan YC; Qiu XZ; Gao ZC; Wang H; Chen SX; Xiong Y; Liu GH; Lin SE; McCarthy A; John JV; Wei DX; Hou HH
    Mil Med Res; 2023 Mar; 10(1):16. PubMed ID: 36978167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics.
    Li P; Kim S; Tian B
    ACS Nano; 2022 Dec; 16(12):19651-19664. PubMed ID: 36516872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.