These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37290069)

  • 1. Analytical excited state gradients for time-dependent density functional theory plus tight binding (TDDFT + TB).
    Havenridge S; Rüger R; Aikens CM
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of energy and gradient for the TDDFT-approximate auxiliary function (aas) method.
    Wang Y; Havenridge S; Aikens CM
    J Chem Phys; 2024 Jul; 161(2):. PubMed ID: 38980092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory.
    Chiba M; Tsuneda T; Hirao K
    J Chem Phys; 2006 Apr; 124(14):144106. PubMed ID: 16626179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.
    Herbert JM; Zhang X; Morrison AF; Liu J
    Acc Chem Res; 2016 May; 49(5):931-41. PubMed ID: 27100899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation.
    Zeng Q; Liang W
    J Chem Phys; 2015 Oct; 143(13):134104. PubMed ID: 26450289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical Gradients for Nuclear-Electronic Orbital Time-Dependent Density Functional Theory: Excited-State Geometry Optimizations and Adiabatic Excitation Energies.
    Tao Z; Roy S; Schneider PE; Pavošević F; Hammes-Schiffer S
    J Chem Theory Comput; 2021 Aug; 17(8):5110-5122. PubMed ID: 34260237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of molecular photophysical and photochemical properties using linear response time-dependent density functional theory with classical embedding: Successes and challenges.
    Liang W; Pei Z; Mao Y; Shao Y
    J Chem Phys; 2022 Jun; 156(21):210901. PubMed ID: 35676148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic gradients, geometry optimization and excited state potential energy surfaces from the particle-particle random phase approximation.
    Zhang D; Peng D; Zhang P; Yang W
    Phys Chem Chem Phys; 2015 Jan; 17(2):1025-38. PubMed ID: 25410624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site.
    Bertini L; Greco C; De Gioia L; Fantucci P
    J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited state gradients for a state-specific continuum solvation approach: The vertical excitation model within a Lagrangian TDDFT formulation.
    Guido CA; Scalmani G; Mennucci B; Jacquemin D
    J Chem Phys; 2017 May; 146(20):204106. PubMed ID: 28571373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical approach for the excited-state Hessian in time-dependent density functional theory: formalism, implementation, and performance.
    Liu J; Liang W
    J Chem Phys; 2011 Nov; 135(18):184111. PubMed ID: 22088056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the doubly excited state with time-dependent Hartree-Fock and density functional theories.
    Isborn CM; Li X
    J Chem Phys; 2008 Nov; 129(20):204107. PubMed ID: 19045852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient implementation of the analytical gradients of pseudospectral time-dependent density functional theory.
    Cao Y; Halls MD; Friesner RA
    J Chem Phys; 2021 Jul; 155(2):024115. PubMed ID: 34266272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory.
    Tao Z; Yu Q; Roy S; Hammes-Schiffer S
    Acc Chem Res; 2021 Nov; 54(22):4131-4141. PubMed ID: 34726895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular properties of excited electronic state: formalism, implementation, and applications of analytical second energy derivatives within the framework of the time-dependent density functional theory/molecular mechanics.
    Zeng Q; Liu J; Liang W
    J Chem Phys; 2014 May; 140(18):18A506. PubMed ID: 24832314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation.
    Liu J; Liang W
    J Chem Phys; 2011 Jul; 135(1):014113. PubMed ID: 21744894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited-State Potential Energy Surfaces, Conical Intersections, and Analytical Gradients from Ground-State Density Functional Theory.
    Mei Y; Yang W
    J Phys Chem Lett; 2019 May; 10(10):2538-2545. PubMed ID: 31038964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.
    Cao Y; Hughes T; Giesen D; Halls MD; Goldberg A; Vadicherla TR; Sastry M; Patel B; Sherman W; Weisman AL; Friesner RA
    J Comput Chem; 2016 Jun; 37(16):1425-41. PubMed ID: 27013141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.