These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37290069)

  • 21. Excited-State Properties for Extended Systems: Efficient Hybrid Density Functional Methods.
    Hehn AS; Sertcan B; Belleflamme F; Chulkov SK; Watkins MB; Hutter J
    J Chem Theory Comput; 2022 Jul; 18(7):4186-4202. PubMed ID: 35759470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules.
    Rappoport D; Furche F
    J Chem Phys; 2005 Feb; 122(6):064105. PubMed ID: 15740365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-dependent density functional theory based upon the fragment molecular orbital method.
    Chiba M; Fedorov DG; Kitaura K
    J Chem Phys; 2007 Sep; 127(10):104108. PubMed ID: 17867738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.
    Kowalczyk T; Le K; Irle S
    J Chem Theory Comput; 2016 Jan; 12(1):313-23. PubMed ID: 26587877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NAC-TDDFT: Time-Dependent Density Functional Theory for Nonadiabatic Couplings.
    Wang Z; Wu C; Liu W
    Acc Chem Res; 2021 Sep; 54(17):3288-3297. PubMed ID: 34448566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calculation of atomic excitation energies by time-dependent density functional theory within a modified linear response.
    Hu C; Sugino O; Tateyama Y
    J Phys Condens Matter; 2009 Feb; 21(6):064229. PubMed ID: 21715931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generalized Energy-Based Fragmentation Approach for the Electronic Emission Spectra of Large Systems.
    Du J; Liao K; Ma J; Li W; Li S
    J Chem Theory Comput; 2022 Dec; 18(12):7630-7638. PubMed ID: 36399522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
    Yang Y; Culpitt T; Hammes-Schiffer S
    J Phys Chem Lett; 2018 Apr; 9(7):1765-1770. PubMed ID: 29553738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study.
    Komoto KT; Kowalczyk T
    J Phys Chem A; 2016 Oct; 120(41):8160-8168. PubMed ID: 27677341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimal Auxiliary Basis Set Approach for the Electronic Excitation Spectra of Organic Molecules.
    Zhou Z; Della Sala F; Parker SM
    J Phys Chem Lett; 2023 Feb; 14(7):1968-1976. PubMed ID: 36787711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Minimal auxiliary basis set for time-dependent density functional theory and comparison with tight-binding approximations: Application to silver nanoparticles.
    Giannone G; Della Sala F
    J Chem Phys; 2020 Aug; 153(8):084110. PubMed ID: 32872879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spin-Flip Density Functional Theory for the Redox Properties of Organic Photoredox Catalysts in Excited States.
    Choi J; Kim H
    J Chem Theory Comput; 2021 Feb; 17(2):767-776. PubMed ID: 33449691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of atoms in electronically excited molecules within the formalism of TDDFT.
    Sánchez-Flores EI; Chávez-Calvillo R; Keith TA; Cuevas G; Rocha-Rinza T; Cortés-Guzmán F
    J Comput Chem; 2014 Apr; 35(10):820-8. PubMed ID: 26249171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excited State Orbital Optimization via Minimizing the Square of the Gradient: General Approach and Application to Singly and Doubly Excited States via Density Functional Theory.
    Hait D; Head-Gordon M
    J Chem Theory Comput; 2020 Mar; 16(3):1699-1710. PubMed ID: 32017554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-dependent density functional theory studies of the optical and electronic properties of the [M
    Orellana C; Miranda-Rojas S; Sundholm D; Mendizabal F
    Phys Chem Chem Phys; 2022 Oct; 24(39):24457-24468. PubMed ID: 36193576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.
    Nishimoto Y
    J Chem Phys; 2015 Sep; 143(9):094108. PubMed ID: 26342360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementation of the analytic energy gradient for the combined time-dependent density functional theory/effective fragment potential method: application to excited-state molecular dynamics simulations.
    Minezawa N; De Silva N; Zahariev F; Gordon MS
    J Chem Phys; 2011 Feb; 134(5):054111. PubMed ID: 21303096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance.
    Send R; Furche F
    J Chem Phys; 2010 Jan; 132(4):044107. PubMed ID: 20113019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB).
    Grimme S; Bannwarth C
    J Chem Phys; 2016 Aug; 145(5):054103. PubMed ID: 27497535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accelerating Excitation Energy Computation in Molecules and Solids within Linear-Response Time-Dependent Density Functional Theory via Interpolative Separable Density Fitting Decomposition.
    Hu W; Liu J; Li Y; Ding Z; Yang C; Yang J
    J Chem Theory Comput; 2020 Feb; 16(2):964-973. PubMed ID: 31899646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.