BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 37290118)

  • 1. Synaptic memory and CaMKII.
    Nicoll RA; Schulman H
    Physiol Rev; 2023 Oct; 103(4):2877-2925. PubMed ID: 37290118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific.
    Goodell DJ; Zaegel V; Coultrap SJ; Hell JW; Bayer KU
    Cell Rep; 2017 Jun; 19(11):2231-2243. PubMed ID: 28614711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CaMKII autophosphorylation is the only enzymatic event required for synaptic memory.
    Chen X; Cai Q; Zhou J; Pleasure SJ; Schulman H; Zhang M; Nicoll RA
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2402783121. PubMed ID: 38889145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of CaMKII action in long-term potentiation.
    Lisman J; Yasuda R; Raghavachari S
    Nat Rev Neurosci; 2012 Feb; 13(3):169-82. PubMed ID: 22334212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CaMKII/GluN2B Protein Interaction Maintains Synaptic Strength.
    Barcomb K; Hell JW; Benke TA; Bayer KU
    J Biol Chem; 2016 Jul; 291(31):16082-9. PubMed ID: 27246855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of α1,6-Fucosyltransferase Decreases Hippocampal Long Term Potentiation: IMPLICATIONS FOR CORE FUCOSYLATION IN THE REGULATION OF AMPA RECEPTOR HETEROMERIZATION AND CELLULAR SIGNALING.
    Gu W; Fukuda T; Isaji T; Hang Q; Lee HH; Sakai S; Morise J; Mitoma J; Higashi H; Taniguchi N; Yawo H; Oka S; Gu J
    J Biol Chem; 2015 Jul; 290(28):17566-75. PubMed ID: 25979332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulating β-adrenergic receptors promotes synaptic potentiation by switching CaMKII movement from LTD to LTP mode.
    Larsen ME; Buonarati OR; Qian H; Hell JW; Bayer KU
    J Biol Chem; 2023 Jun; 299(6):104706. PubMed ID: 37061000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.
    Lisman J; Raghavachari S
    Brain Res; 2015 Sep; 1621():51-61. PubMed ID: 25511992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation.
    He Y; Kulasiri D; Samarasinghe S
    J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active calcium/calmodulin-dependent protein kinase II (CaMKII) regulates NMDA receptor mediated postischemic long-term potentiation (i-LTP) by promoting the interaction between CaMKII and NMDA receptors in ischemia.
    Wang N; Chen L; Cheng N; Zhang J; Tian T; Lu W
    Neural Plast; 2014; 2014():827161. PubMed ID: 24734203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory.
    Park J; Chávez AE; Mineur YS; Morimoto-Tomita M; Lutzu S; Kim KS; Picciotto MR; Castillo PE; Tomita S
    Neuron; 2016 Oct; 92(1):75-83. PubMed ID: 27667007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of CaMKII autophosphorylation for NMDA receptor-dependent synaptic potentiation.
    Giese KP
    Neuropharmacology; 2021 Aug; 193():108616. PubMed ID: 34051268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of 4.1N by CaMKII Regulates the Trafficking of GluA1-containing AMPA Receptors During Long-term Potentiation in Acute Rat Hippocampal Brain Slices.
    Yang J; Ma RN; Dong JM; Hu SQ; Liu Y; Yan JZ
    Neuroscience; 2024 Jan; 536():131-142. PubMed ID: 37993087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII.
    Gouet C; Aburto B; Vergara C; Sanhueza M
    PLoS One; 2012; 7(11):e49293. PubMed ID: 23145145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B.
    She K; Rose JK; Craig AM
    Mol Cell Neurosci; 2012 Nov; 51(3-4):68-78. PubMed ID: 22902837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca(2+) permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.
    Asrar S; Zhou Z; Ren W; Jia Z
    PLoS One; 2009; 4(2):e4339. PubMed ID: 19190753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength.
    Sanhueza M; Fernandez-Villalobos G; Stein IS; Kasumova G; Zhang P; Bayer KU; Otmakhov N; Hell JW; Lisman J
    J Neurosci; 2011 Jun; 31(25):9170-8. PubMed ID: 21697368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular mechanisms for memory formation].
    Manabe T
    Brain Nerve; 2008 Jul; 60(7):707-15. PubMed ID: 18646610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M
    Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic memory survives molecular turnover.
    Lee J; Chen X; Nicoll RA
    Proc Natl Acad Sci U S A; 2022 Oct; 119(42):e2211572119. PubMed ID: 36215504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.