These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37290236)

  • 1. Controlled volatile release from β-sitosterol-based oleogels based on different self-assembly mechanisms.
    Wang S; Liu G
    Food Chem; 2023 Nov; 425():136506. PubMed ID: 37290236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling release of astaxanthin in β-sitosterol oleogel-based emulsions via different self-assembled mechanisms and composition of the oleogelators.
    Wang S; Qin Y; Liu Y; Liu G; Cheng G; Soteyome T
    Food Res Int; 2024 Jun; 186():114350. PubMed ID: 38729698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterol-based oleogels' characterization envisioning food applications.
    Martins AJ; Cerqueira MA; Pastrana LM; Cunha RL; Vicente AA
    J Sci Food Agric; 2019 May; 99(7):3318-3325. PubMed ID: 30569530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release.
    Yang DX; Chen XW; Yang XQ
    J Sci Food Agric; 2018 Jan; 98(2):582-589. PubMed ID: 28653331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro release of hydrophobic drugs by oleogel rods with biocompatible gelators.
    Macoon R; Robey M; Chauhan A
    Eur J Pharm Sci; 2020 Sep; 152():105413. PubMed ID: 32535213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable volatile release from organogel-emulsions based on the self-assembly of β-sitosterol and γ-oryzanol.
    Chen XW; Chen YJ; Wang JM; Guo J; Yin SW; Yang XQ
    Food Chem; 2017 Apr; 221():1491-1498. PubMed ID: 27979120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid.
    Sun P; Xia B; Ni ZJ; Wang Y; Elam E; Thakur K; Ma YL; Wei ZJ
    Food Chem; 2021 Oct; 360():130017. PubMed ID: 33984566
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Dong L; Lv M; Gao X; Zhang L; Rogers M; Cao Y; Lan Y
    Food Funct; 2020 Nov; 11(11):9503-9513. PubMed ID: 32955534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different gelators on the physicochemical properties and microstructure of coconut oleogels.
    Yang Z; Cui J; Yun Y; Xu Y; Tan CP; Zhang W
    J Sci Food Agric; 2024 Jul; 104(9):5139-5148. PubMed ID: 38284624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelation Behavior and Stability of Multicomponent Sterol-Based Oleogels.
    Martins AJ; Cerqueira F; Vicente AA; Cunha RL; Pastrana LM; Cerqueira MA
    Gels; 2022 Jan; 8(1):. PubMed ID: 35049574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of γ-oryzanol/β-sitosterol-based oleogels on the physicochemical and gel properties of Nemipterus virgatus myofibrillar protein.
    Mi H; Yang Y; Yi S; Li J; Chen J; Li X
    J Sci Food Agric; 2024 Jun; ():. PubMed ID: 38872574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lecithin and phytosterols-based mixtures as hybrid structuring agents in different organic phases.
    Okuro PK; Malfatti-Gasperini AA; Vicente AA; Cunha RL
    Food Res Int; 2018 Sep; 111():168-177. PubMed ID: 30007673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building blocks of β-sitosterol-γ-oryzanol gels revealed by small-angle neutron scattering and real space modelling.
    Gilbert EP
    Food Funct; 2022 Jul; 13(13):7123-7131. PubMed ID: 35698970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical properties and cookie-making performance of oleogels prepared with crude and refined soybean oil: a comparative study.
    Zhao M; Lan Y; Cui L; Monono E; Rao J; Chen B
    Food Funct; 2020 Mar; 11(3):2498-2508. PubMed ID: 32134421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical Characterization of Yellow Cake Prepared with Structured Lipid Oleogels.
    Willett SA; Akoh CC
    J Food Sci; 2019 Jun; 84(6):1390-1399. PubMed ID: 31107548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.
    Sawalha H; Venema P; Bot A; Flöter E; Adel RD; van der Linden E
    J Am Oil Chem Soc; 2015; 92(11-12):1651-1659. PubMed ID: 26640280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of density profile of self-assembled sitosterol + oryzanol tubules with small-angle neutron scattering.
    Bot A; Gilbert EP; Bouwman WG; Sawalha H; den Adel R; Garamus VM; Venema P; van der Linden E; Flöter E
    Faraday Discuss; 2012; 158():223-38; discussion 239-66. PubMed ID: 23234169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Release of Flavor Substances from Sesame-Oil-Based Oleogels Prepared Using Biological Waxes or Monoglycerides.
    Pang M; Cao L; Kang S; Jiang S; Cao L
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of different oleogelators on lipolysis and curcuminoid bioaccessibility upon in vitro digestion of sunflower oil oleogels.
    Calligaris S; Alongi M; Lucci P; Anese M
    Food Chem; 2020 Jun; 314():126146. PubMed ID: 31954944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of cholesterol and β-sitosterol on the structure of saturated diacylphosphatidylcholine bilayers.
    Gallová J; Uhríková D; Kučerka N; Doktorovová S; Funari SS; Teixeira J; Balgavý P
    Eur Biophys J; 2011 Feb; 40(2):153-63. PubMed ID: 20978886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.