These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 37290309)
41. Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Zhao K; Qiao Q; Chu D; Gu H; Dao TH; Zhang J; Bao J Bioresour Technol; 2013 May; 135():481-9. PubMed ID: 23127836 [TBL] [Abstract][Full Text] [Related]
42. D-Lactic acid production from agricultural residues by membrane integrated continuous fermentation coupled with B vitamin supplementation. Ma K; Cui Y; Zhao K; Yang Y; Wang Y; Hu G; He M Biotechnol Biofuels Bioprod; 2022 Mar; 15(1):24. PubMed ID: 35246204 [TBL] [Abstract][Full Text] [Related]
43. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation. Zhi Z; Wang H Bioprocess Biosyst Eng; 2014 Jul; 37(7):1447-58. PubMed ID: 24429553 [TBL] [Abstract][Full Text] [Related]
44. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock. Yi X; Zhang P; Sun J; Tu Y; Gao Q; Zhang J; Bao J J Biotechnol; 2016 Jan; 217():112-21. PubMed ID: 26616423 [TBL] [Abstract][Full Text] [Related]
45. An Approach of Utilizing Water-Soluble Carbohydrates in Lignocellulose Feedstock for Promotion of Cellulosic l-Lactic Acid Production. Han X; Hong F; Liu G; Bao J J Agric Food Chem; 2018 Oct; 66(39):10225-10232. PubMed ID: 30207160 [TBL] [Abstract][Full Text] [Related]
46. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Zhang Y; Vadlani PV J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329 [TBL] [Abstract][Full Text] [Related]
47. Non-sterilized fermentative production of polymer-grade L-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2-6. Qin J; Zhao B; Wang X; Wang L; Yu B; Ma Y; Ma C; Tang H; Sun J; Xu P PLoS One; 2009; 4(2):e4359. PubMed ID: 19194504 [TBL] [Abstract][Full Text] [Related]
48. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Patel MA; Ou MS; Ingram LO; Shanmugam KT Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550 [TBL] [Abstract][Full Text] [Related]
49. Microbial production host selection for converting second-generation feedstocks into bioproducts. Rumbold K; van Buijsen HJ; Overkamp KM; van Groenestijn JW; Punt PJ; van der Werf MJ Microb Cell Fact; 2009 Dec; 8():64. PubMed ID: 19958560 [TBL] [Abstract][Full Text] [Related]
50. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824. Liao Z; Guo X; Hu J; Suo Y; Fu H; Wang J Bioresour Technol; 2019 Jan; 272():561-569. PubMed ID: 30396113 [TBL] [Abstract][Full Text] [Related]
51. Production of optically pure L(+)-lactic acid from waste plywood chips using an isolated thermotolerant Enterococcus faecalis SI at a pilot scale. Yuan SF; Hsu TC; Wang CA; Jang MF; Kuo YC; Alper HS; Guo GL; Hwang WS J Ind Microbiol Biotechnol; 2018 Nov; 45(11):961-970. PubMed ID: 30182264 [TBL] [Abstract][Full Text] [Related]
52. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea. Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527 [TBL] [Abstract][Full Text] [Related]
53. L-Poly(lactic acid) Production by Microwave Irradiation of Lactic Acid Obtained from Lignocellulosic Wastes. Senila L; Cadar O; Kovacs E; Gal E; Dan M; Stupar Z; Simedru D; Senila M; Roman C Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372965 [TBL] [Abstract][Full Text] [Related]
54. Efficient l-lactic acid production from corncob residue using metabolically engineered thermo-tolerant yeast. Kong X; Zhang B; Hua Y; Zhu Y; Li W; Wang D; Hong J Bioresour Technol; 2019 Feb; 273():220-230. PubMed ID: 30447623 [TBL] [Abstract][Full Text] [Related]
55. Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. Glaser R; Venus J N Biotechnol; 2017 Jul; 37(Pt B):180-193. PubMed ID: 28188935 [TBL] [Abstract][Full Text] [Related]
56. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Fu H; Yang ST; Wang M; Wang J; Tang IC Bioresour Technol; 2017 Jun; 234():389-396. PubMed ID: 28343058 [TBL] [Abstract][Full Text] [Related]
57. l-Lactate oxidase-mediated removal of l-lactic acid derived from fermentation medium for the production of optically pure D-lactic acid. Okano K; Sato Y; Hama S; Tanaka T; Noda H; Kondo A; Honda K Biotechnol J; 2022 Apr; 17(4):e2100331. PubMed ID: 35076998 [TBL] [Abstract][Full Text] [Related]
58. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose. Wu J; Hu J; Zhao S; He M; Hu G; Ge X; Peng N Appl Biochem Biotechnol; 2018 May; 185(1):163-178. PubMed ID: 29098561 [TBL] [Abstract][Full Text] [Related]
59. Valorization of municipal organic waste into purified lactic acid. Thygesen A; Tsapekos P; Alvarado-Morales M; Angelidaki I Bioresour Technol; 2021 Dec; 342():125933. PubMed ID: 34852434 [TBL] [Abstract][Full Text] [Related]
60. Fermentative lactic acid production from seaweed hydrolysate using Lactobacillus sp. And Weissella sp. Nagarajan D; Oktarina N; Chen PT; Chen CY; Lee DJ; Chang JS Bioresour Technol; 2022 Jan; 344(Pt A):126166. PubMed ID: 34678452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]