These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37290509)
81. Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Ruecha N; Rodthongkum N; Cate DM; Volckens J; Chailapakul O; Henry CS Anal Chim Acta; 2015 May; 874():40-8. PubMed ID: 25910444 [TBL] [Abstract][Full Text] [Related]
82. Rapid determination of cadmium in rice using an all-solid RGO-enhanced light addressable potentiometric sensor. Zhang W; Xu Y; Zou X Food Chem; 2018 Sep; 261():1-7. PubMed ID: 29739569 [TBL] [Abstract][Full Text] [Related]
83. A Novel Electrochemical Sensor Based on Electropolymerized Ion Imprinted PoPD/ERGO Composite for Trace Cd(II) Determination in Water. Wang J; Hu J; Hu S; Gao G; Song Y Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32069908 [TBL] [Abstract][Full Text] [Related]
84. Sulfur-Bridged Co(II)-Thiacalix[4]arene Metal-Organic Framework as an Electrochemical Sensor for the Determination of Toxic Heavy Metals. Guo TT; Cao XY; An YY; Zhang XL; Yan JZ Inorg Chem; 2023 Mar; 62(11):4485-4494. PubMed ID: 36893304 [TBL] [Abstract][Full Text] [Related]
85. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury(II). Teodoro KBR; Migliorini FL; Facure MHM; Correa DS Carbohydr Polym; 2019 Mar; 207():747-754. PubMed ID: 30600061 [TBL] [Abstract][Full Text] [Related]
86. Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg(II), Cu(II), Pb(II) and Cd(II) in foodstuff. Han X; Meng Z; Zhang H; Zheng J Mikrochim Acta; 2018 May; 185(5):274. PubMed ID: 29717357 [TBL] [Abstract][Full Text] [Related]
87. Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. Tarley CR; Santos VS; Baêta BE; Pereira AC; Kubota LT J Hazard Mater; 2009 Sep; 169(1-3):256-62. PubMed ID: 19398268 [TBL] [Abstract][Full Text] [Related]
88. Co Qiu Z; Zheng Z; Song Z; Sun Y; Shan Q; Lin Z; Xie Z Talanta; 2022 May; 242():123299. PubMed ID: 35183982 [TBL] [Abstract][Full Text] [Related]
89. Smartphone-based electrochemical analysis integrated with NFC system for the voltammetric detection of heavy metals using a screen-printed graphene electrode. Pungjunun K; Yakoh A; Chaiyo S; Siangproh W; Praphairaksit N; Chailapakul O Mikrochim Acta; 2022 Apr; 189(5):191. PubMed ID: 35420315 [TBL] [Abstract][Full Text] [Related]
90. The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution. Yang L; Wen T; Wang L; Miki T; Bai H; Lu X; Yu H; Nagasaka T J Environ Manage; 2019 Feb; 231():41-48. PubMed ID: 30326337 [TBL] [Abstract][Full Text] [Related]
91. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Bansod B; Kumar T; Thakur R; Rana S; Singh I Biosens Bioelectron; 2017 Aug; 94():443-455. PubMed ID: 28340464 [TBL] [Abstract][Full Text] [Related]
92. Novel nano-engineered environmental sensor based on polymelamine/graphitic-carbon nitride nanohybrid material for sensitive and simultaneous monitoring of toxic heavy metals. Eswaran M; Tsai PC; Wu MT; Ponnusamy VK J Hazard Mater; 2021 Sep; 418():126267. PubMed ID: 34111746 [TBL] [Abstract][Full Text] [Related]
93. Synthesis of tetrahexahedral Au-Pd core-shell nanocrystals and reduction of graphene oxide for the electrochemical detection of epinephrine. Dong W; Ren Y; Bai Z; Jiao J; Chen Y; Han B; Chen Q J Colloid Interface Sci; 2018 Feb; 512():812-818. PubMed ID: 29121608 [TBL] [Abstract][Full Text] [Related]
94. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide. Xuan X; Hossain MF; Park JY Sci Rep; 2016 Sep; 6():33125. PubMed ID: 27616629 [TBL] [Abstract][Full Text] [Related]
95. Highly Sensitive AgNP/MWCNT/Nafion Modified GCE-Based Sensor for the Determination of Heavy Metals in Organic and Non-organic Vegetables. Palisoc ST; Natividad MT; De Jesus N; Carlos J Sci Rep; 2018 Nov; 8(1):17445. PubMed ID: 30487525 [TBL] [Abstract][Full Text] [Related]
96. A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Lee S; Oh J; Kim D; Piao Y Talanta; 2016 Nov; 160():528-536. PubMed ID: 27591647 [TBL] [Abstract][Full Text] [Related]
98. Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Yang J; Yu JH; Rudi Strickler J; Chang WJ; Gunasekaran S Biosens Bioelectron; 2013 Sep; 47():530-8. PubMed ID: 23644058 [TBL] [Abstract][Full Text] [Related]
99. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application. Ming J; Wu Y; Park JB; Lee JK; Zhao F; Sun YK Nanoscale; 2013 Nov; 5(21):10390-6. PubMed ID: 24056975 [TBL] [Abstract][Full Text] [Related]
100. PbS/graphene hybrid nanostructures coated glassy carbon electrode for the electrochemical sensing of copper ions in aqueous solution. Senthil T; Parkavi R; Senthil Kumar P; Chandramohan A; Rangasamy G; Srinivasan K; Dinakaran K Food Chem Toxicol; 2022 Oct; 168():113375. PubMed ID: 35995075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]