These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37290627)

  • 1. Investigation of the adsorption affinity of organic micropollutants on seaweed and its QSAR study.
    Jin SR; Cho BG; Mun SB; Kim SJ; Cho CW
    Environ Res; 2023 Sep; 232():116349. PubMed ID: 37290627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption modeling of microcrystalline cellulose for pharmaceutical-based micropollutants.
    Cho BG; Mun SB; Lim CR; Kang SB; Cho CW; Yun YS
    J Hazard Mater; 2022 Mar; 426():128087. PubMed ID: 34923381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR modelling for predicting adsorption of neutral, cationic, and anionic pharmaceuticals and other neutral compounds to microalgae Chlorella vulgaris in aquatic environment.
    Cho CW; Zhao Y; Yun YS
    Water Res; 2019 Mar; 151():288-295. PubMed ID: 30616041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling for the estimating the adsorption property of fruit waste-based biosorbents for the removal of organic micropollutants.
    Cho BG; Lee JH; Kim HI; Mun SB; Jin SR; Kim DG; Cho CW; Yun YS
    Environ Res; 2023 May; 225():115593. PubMed ID: 36863649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of organic micropollutants on yeast: Batch experiment and modeling.
    Mun SB; Cho BG; Jin SR; Lim CR; Yun YS; Cho CW
    J Environ Manage; 2023 May; 334():117507. PubMed ID: 36809737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of adsorptive interactions of ionic and neutral pharmaceuticals and other chemicals with the surface of Escherichia coli cells in aquatic environment.
    Cho CW; Park JS; Zhao Y; Yun YS
    Environ Pollut; 2017 Aug; 227():8-14. PubMed ID: 28454022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of organic pollutant removal using Corynebacterium glutamicum fermentation waste.
    Cho CW; Zhao Y; Choi JW; Kim JA; Bediako JK; Lin S; Song MH; Yun YS
    Environ Res; 2021 Jan; 192():110271. PubMed ID: 33002506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation and updating of QSAR models for partitioning coefficients of ionic liquids in octanol-water and development of a new LFER model.
    Cho CW; Stolte S; Yun YS
    Sci Total Environ; 2018 Aug; 633():920-928. PubMed ID: 29602125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting adsorption of micropollutants on non-functionalized and functionalized multi-walled carbon nanotubes: Experimental study and LFER modeling.
    Zhao Y; Tang H; Wang D; Song MH; Cho CW; Yun YS
    J Hazard Mater; 2021 Jun; 411():125124. PubMed ID: 33858098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Cyclodextrin functionalized adsorbents for removal of organic micropollutants from water.
    Ozelcaglayan ED; Parker WJ
    Chemosphere; 2023 Apr; 320():137964. PubMed ID: 36736473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and QSAR studies on adsorptive interaction of anionic nonsteroidal anti-inflammatory drugs with activated charcoal.
    Zhao Y; Choi JW; Lin S; Kim JA; Cho CW; Yun YS
    Chemosphere; 2018 Dec; 212():620-628. PubMed ID: 30173108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity.
    He J; Li Y; Cai X; Chen K; Zheng H; Wang C; Zhang K; Lin D; Kong L; Liu J
    Chemosphere; 2017 May; 174():380-389. PubMed ID: 28187384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSARs to predict adsorption affinity of organic micropollutants for activated carbon and β-cyclodextrin polymer adsorbents.
    Ling Y; Klemes MJ; Steinschneider S; Dichtel WR; Helbling DE
    Water Res; 2019 May; 154():217-226. PubMed ID: 30798176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the aqueous phase reactivity of hydroxyl radical towards diverse organic micropollutants: An aid to water decontamination processes.
    Gupta S; Basant N
    Chemosphere; 2017 Oct; 185():1164-1172. PubMed ID: 28764137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive interaction of cationic pharmaceuticals on activated charcoal: Experimental determination and QSAR modelling.
    Zhao Y; Choi JW; Bediako JK; Song MH; Lin S; Cho CW; Yun YS
    J Hazard Mater; 2018 Oct; 360():529-535. PubMed ID: 30145479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotube-Crosslinked Polymers.
    Yang LP; Ke H; Yao H; Jiang W
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21404-21411. PubMed ID: 34227192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water.
    Wang Z; Zhang P; Hu F; Zhao Y; Zhu L
    Carbohydr Polym; 2017 Dec; 177():224-231. PubMed ID: 28962763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of degradability of micropollutants by sonolysis in water with QSPR - a case study on phenol derivates.
    Glienke J; Schillberg W; Stelter M; Braeutigam P
    Ultrason Sonochem; 2022 Jan; 82():105867. PubMed ID: 34920352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics - A review.
    Yu Y; Mo WY; Luukkonen T
    Sci Total Environ; 2021 Nov; 797():149140. PubMed ID: 34303986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chemical structure of organic micropollutants on the degradability with ozonation.
    Glienke J; Stelter M; Braeutigam P
    Water Res; 2022 Aug; 222():118866. PubMed ID: 35872520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.