These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37291100)

  • 21. Development and Optimization of CRISPR Prime Editing System in Photoautotrophic Cells.
    Jiang Z; Abdullah ; Zhang S; Jiang Y; Liu R; Xiao Y
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing.
    Hwang GH; Jeong YK; Habib O; Hong SA; Lim K; Kim JS; Bae S
    Nucleic Acids Res; 2021 Jul; 49(W1):W499-W504. PubMed ID: 33939828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of prime editing system to introduce TP53 R248Q hotspot mutation in acute lymphoblastic leukemia cell line.
    Nguyen T; Aida T; Iijima-Yamashita Y; Tamai M; Nagamachi A; Kagami K; Komatsu C; Kasai S; Akahane K; Goi K; Inaba T; Sanada M; Inukai T
    Cancer Sci; 2024 Jun; 115(6):1924-1935. PubMed ID: 38549229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prime editing: Mechanism insight and recent applications in plants.
    Vu TV; Nguyen NT; Kim J; Hong JC; Kim JY
    Plant Biotechnol J; 2024 Jan; 22(1):19-36. PubMed ID: 37794706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protocol for the design, conduct, and evaluation of prime editing in human pluripotent stem cells.
    Wu Y; Sidharta M; Zhong A; Persily B; Li M; Zhou T
    STAR Protoc; 2023 Dec; 4(4):102583. PubMed ID: 37738119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Addition of the T5 exonuclease increases the prime editing efficiency in plants.
    Liang Z; Wu Y; Guo Y; Wei S
    J Genet Genomics; 2023 Aug; 50(8):582-588. PubMed ID: 36958601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introduction of mutations in plants with prime editing.
    Hao L; Pu X; Song J
    Methods; 2021 Oct; 194():83-93. PubMed ID: 33774158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Development, Optimization and Future of Prime Editing.
    Petrova IO; Smirnikhina SA
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs).
    Jin S; Lin Q; Gao Q; Gao C
    Nat Protoc; 2023 Mar; 18(3):831-853. PubMed ID: 36434096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Precise Insertion of AttB Sequences in Goat Genome Using Enhanced Prime Editor.
    Li A; Zhu Z; Yang J; Liu Y; Zhang Y; Liu J
    Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide specificity of prime editors in plants.
    Jin S; Lin Q; Luo Y; Zhu Z; Liu G; Li Y; Chen K; Qiu JL; Gao C
    Nat Biotechnol; 2021 Oct; 39(10):1292-1299. PubMed ID: 33859403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure.
    Li X; Zhou L; Gao BQ; Li G; Wang X; Wang Y; Wei J; Han W; Wang Z; Li J; Gao R; Zhu J; Xu W; Wu J; Yang B; Sun X; Yang L; Chen J
    Nat Commun; 2022 Mar; 13(1):1669. PubMed ID: 35351879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extended pegRNAs enhance the editing capability of Prime editing.
    He K; Xue Q; Zhou W; Wang P; Hu X; Lin T; Chen N; Wang B; Ma T; Ding S
    Trends Biotechnol; 2024 Sep; ():. PubMed ID: 39341743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-efficiency prime editing with optimized, paired pegRNAs in plants.
    Lin Q; Jin S; Zong Y; Yu H; Zhu Z; Liu G; Kou L; Wang Y; Qiu JL; Li J; Gao C
    Nat Biotechnol; 2021 Aug; 39(8):923-927. PubMed ID: 33767395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-fidelity, efficient, and reversible labeling of endogenous proteins using CRISPR-based designer exon insertion.
    Zhong H; Ceballos CC; Massengill CI; Muniak MA; Ma L; Qin M; Petrie SK; Mao T
    Elife; 2021 Jun; 10():. PubMed ID: 34100715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing.
    Peterka M; Akrap N; Li S; Wimberger S; Hsieh PP; Degtev D; Bestas B; Barr J; van de Plassche S; Mendoza-Garcia P; Šviković S; Sienski G; Firth M; Maresca M
    Nat Commun; 2022 Mar; 13(1):1240. PubMed ID: 35332138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing prime editor flexibility with coiled-coil heterodimers.
    Mu S; Chen H; Li Q; Gou S; Liu X; Wang J; Zheng W; Chen M; Jin Q; Lai L; Wang K; Shi H
    Genome Biol; 2024 Apr; 25(1):108. PubMed ID: 38671524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Twin prime editor: seamless repair without damage.
    Awan MJA; Ali Z; Amin I; Mansoor S
    Trends Biotechnol; 2022 Apr; 40(4):374-376. PubMed ID: 35153078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted, programmable, and precise tandem duplication in the mammalian genome.
    Jiao Y; Li M; He X; Wang Y; Song J; Hu Y; Li L; Zhou L; Jiang L; Qu J; Xie L; Chen Q; Yao S
    Genome Res; 2023 May; 33(5):779-786. PubMed ID: 37295844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.