BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37291983)

  • 1. Enhanced hemocompatibility and antibacterial activity of biodegradable poly(ester-urethane) modified with quercetin and phosphorylcholine for durable blood-contacting applications.
    Hao T; Niu G; Zhang H; Zhu Y; Zhang C; Kong F; Xu J; Hou Z
    J Mater Chem B; 2023 Jun; 11(25):5846-5855. PubMed ID: 37291983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility.
    Hou Z; Xu J; Teng J; Jia Q; Wang X
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110571. PubMed ID: 32228944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mild method for surface-grafting MPC onto poly(ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency.
    Liu X; Yang B; Hou Z; Zhang N; Gao Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109952. PubMed ID: 31499985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content.
    Zhang L; Zhang C; Zhang W; Zhang H; Hou Z
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic studies on nonthrombogenic biomaterials 14: synthesis and characterization of poly(ether-urethane) bearing a Zwitterionic structure of phosphorylcholine on the surface.
    Yang ZM; Wang L; Yuan J; Shen J; Lin SC
    J Biomater Sci Polym Ed; 2003; 14(7):707-18. PubMed ID: 12903738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of proteins onto poly(ether urethane) with a phosphorylcholine moiety and influence of preadsorbed phospholipid.
    van der Heiden AP; Willems GM; Lindhout T; Pijpers AP; Koole LH
    J Biomed Mater Res; 1998 May; 40(2):195-203. PubMed ID: 9549614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine.
    Fang J; Ye SH; Shankarraman V; Huang Y; Mo X; Wagner WR
    Acta Biomater; 2014 Nov; 10(11):4639-4649. PubMed ID: 25132273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, Physicochemical Properties, and Hemocompatibility of the Composites Based on Biodegradable Poly(Ether-Ester-Urethane) and Phosphorylcholine-Containing Copolymer.
    Zhang J; Yang B; Jia Q; Xiao M; Hou Z
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile and Cost-Effective Method to Prepare Biodegradable Poly(ester urethane)s with Ordered Aliphatic Hard-Segments for Promising Medical Application as Long-Term Implants.
    Bi J; Liu Y; Liu J
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion.
    Gao B; Feng Y; Lu J; Zhang L; Zhao M; Shi C; Khan M; Guo J
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2871-8. PubMed ID: 23623108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Tensile Properties, Biostability, and Biocompatibility of Siloxane-Cross-Linked Polyurethane Containing Ordered Hard Segments for Durable Implant Application.
    Wu X; Jia H; Fu W; Li M; Pan Y
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and one-pot tethering of hydroxyl-capped phosphorylcholine onto cellulose membrane for improving hemocompatibility and antibiofouling property.
    Yuan J; Tong L; Yi H; Wang B; Shen J; Lin S
    Colloids Surf B Biointerfaces; 2013 Nov; 111():432-8. PubMed ID: 23859874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone).
    Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K
    J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility.
    Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M
    J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of poly(ether urethane) with fluorinated phosphorylcholine polyurethane for improvement of the blood compatibility.
    Tan D; Zhang X; Li J; Tan H; Fu Q
    J Biomed Mater Res A; 2012 Feb; 100(2):380-7. PubMed ID: 22083794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticoagulant polyurethane substrates modified with poly(2-methacryloyloxyethyl phosphorylcholine) via SI-RATRP.
    Chi C; Sun B; Zhou N; Zhang M; Chu X; Yuan P; Shen J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():301-308. PubMed ID: 29329075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing gemini quaternary ammonium cationic groups.
    Ding M; Li J; Fu X; Zhou J; Tan H; Gu Q; Fu Q
    Biomacromolecules; 2009 Oct; 10(10):2857-65. PubMed ID: 19817491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.