These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 3729200)

  • 41. Interindividual and intraindividual variability in acetylation: characterization with caffeine.
    Hardy BG; Lemieux C; Walker SE; Bartle WR
    Clin Pharmacol Ther; 1988 Aug; 44(2):152-7. PubMed ID: 3396262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic activation of N-hydroxy-2-aminofluorene and N-hydroxy-2-acetylaminofluorene by monomorphic N-acetyltransferase (NAT1) and polymorphic N-acetyltransferase (NAT2) in colon cytosols of Syrian hamsters congenic at the NAT2 locus.
    Hein DW; Doll MA; Gray K; Rustan TD; Ferguson RJ
    Cancer Res; 1993 Feb; 53(3):509-14. PubMed ID: 8425184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of two phase I metabolites of bendamustine in human liver microsomes and in cancer patients treated with bendamustine hydrochloride.
    Teichert J; Baumann F; Chao Q; Franklin C; Bailey B; Hennig L; Caca K; Schoppmeyer K; Patzak U; Preiss R
    Cancer Chemother Pharmacol; 2007 May; 59(6):759-70. PubMed ID: 16957931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acetylator phenotyping of tuberculosis patients using matrix isoniazid or sulphadimidine and its prognostic significance for treatment with several intermittent isoniazid-containing regimens.
    Ellard GA; Gammon PT
    Br J Clin Pharmacol; 1977 Feb; 4(1):5-14. PubMed ID: 843424
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolism and effect of para-toluene-sulfonamide on rat liver microsomal cytochrome P450 from in vivo and in vitro studies.
    Zhou JQ; Tang ZQ; Zhang JN; Tang JC
    Acta Pharmacol Sin; 2006 May; 27(5):635-40. PubMed ID: 16626521
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Peroxidase-dependent oxidation of sulfonamides by monocytes and neutrophils from humans and dogs.
    Cribb AE; Miller M; Tesoro A; Spielberg SP
    Mol Pharmacol; 1990 Nov; 38(5):744-51. PubMed ID: 2172779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pharmacogenetics and blood dyscrasias.
    Spielberg SP
    Eur J Haematol Suppl; 1996; 60():93-7. PubMed ID: 8987249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Higher frequency of aberrant crypt foci in rapid than slow acetylator inbred rats administered the colon carcinogen 3,2'-dimethyl-4-aminobiphenyl.
    Feng Y; Fretland AJ; Rustan TD; Jiang W; Becker WK; Hein DW
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):56-62. PubMed ID: 9356307
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neutrophil- and myeloperoxidase-mediated metabolism of reduced nimesulide: evidence for bioactivation.
    Yang M; Chordia MD; Li F; Huang T; Linden J; Macdonald TL
    Chem Res Toxicol; 2010 Nov; 23(11):1691-700. PubMed ID: 20939553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acetylation pharmacogenetics. The slow acetylator phenotype is caused by decreased or absent arylamine N-acetyltransferase in human liver.
    Grant DM; Mörike K; Eichelbaum M; Meyer UA
    J Clin Invest; 1990 Mar; 85(3):968-72. PubMed ID: 2312737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anticonvulsant toxicity in vitro: possible role of arene oxides.
    Spielberg SP; Gordon GB; Blake DA; Mellits ED; Bross DS
    J Pharmacol Exp Ther; 1981 May; 217(2):386-9. PubMed ID: 7229980
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Caffeine as a potential indicator for acetylator status.
    Rankin RB; Hudson SA; Fell AF
    J Clin Pharm Ther; 1987 Feb; 12(1):47-51. PubMed ID: 3449563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro kinetics of coumarin 3,4-epoxidation: application to species differences in toxicity and carcinogenicity.
    Born SL; Caudill D; Smith BJ; Lehman-McKeeman LD
    Toxicol Sci; 2000 Nov; 58(1):23-31. PubMed ID: 11053537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of acetylator genotype on hepatic and extrahepatic acetylation, deacetylation, and sulfation of 2-aminofluorene, 2-acetylaminofluorene, and N-hydroxy-2-acetylaminofluorene in the inbred hamster.
    Hein DW; Kirlin WG; Ogolla F; Trinidad A; Thompson LK; Ferguson RJ
    Drug Metab Dispos; 1986; 14(5):566-73. PubMed ID: 2876863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relationship between the genetically determined acetylator phenotype and DNA damage induced by hydralazine and 2-aminofluorene in cultured rabbit hepatocytes.
    McQueen CA; Maslansky CJ; Glowinski IB; Crescenzi SB; Weber WW; Williams GM
    Proc Natl Acad Sci U S A; 1982 Feb; 79(4):1269-72. PubMed ID: 6951172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acetylation polymorphism of caffeine in a Japanese population.
    Hashiguchi M; Ebihara A
    Clin Pharmacol Ther; 1992 Sep; 52(3):274-6. PubMed ID: 1526084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Do arylhydroxylamine metabolites mediate idiosyncratic reactions associated with sulfonamides?
    Svensson CK
    Chem Res Toxicol; 2003 Sep; 16(9):1035-43. PubMed ID: 12971790
    [No Abstract]   [Full Text] [Related]  

  • 58. Nimesulide and hepatic adverse effects: roles of reactive metabolites and host factors.
    Boelsterli UA
    Int J Clin Pract Suppl; 2002 Jul; (128):30-6. PubMed ID: 12166617
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationship between high incidence of adverse dapsone reactions and slow acetylate phenotype or low plasma/lymphocyte glutathione level.
    Guo R; Thormann W; Lauterberg B
    Chin Med J (Engl); 1996 Dec; 109(12):933-6. PubMed ID: 9275325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase.
    Sandberg M; Yasar U; Strömberg P; Höög JO; Eliasson E
    Br J Clin Pharmacol; 2002 Oct; 54(4):423-9. PubMed ID: 12392591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.