These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 37292207)

  • 21. Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway.
    Nakamori Y; Park EJ; Shimaoka M
    Front Immunol; 2020; 11():624279. PubMed ID: 33679715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sepsis-Induced Immunosuppression.
    Torres LK; Pickkers P; van der Poll T
    Annu Rev Physiol; 2022 Feb; 84():157-181. PubMed ID: 34705481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semaphorin 3A contributes to sepsis‑induced immunosuppression by impairing CD4
    Gao Y; Wang C; Wang Z; Li W; Liu Y; Shou S; Chai Y
    Mol Med Rep; 2021 Apr; 23(4):. PubMed ID: 33649856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis.
    Cao C; Yu M; Chai Y
    Cell Death Dis; 2019 Oct; 10(10):782. PubMed ID: 31611560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tim-3 regulates sepsis-induced immunosuppression by inhibiting the NF-κB signaling pathway in CD4 T cells.
    Huang S; Liu D; Sun J; Zhang H; Zhang J; Wang Q; Gan L; Qu G; Qiu J; Deng J; Jiang J; Zeng L
    Mol Ther; 2022 Mar; 30(3):1227-1238. PubMed ID: 34933101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression.
    Shindo Y; Unsinger J; Burnham CA; Green JM; Hotchkiss RS
    Shock; 2015 Apr; 43(4):334-43. PubMed ID: 25565644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis.
    Chang K; Svabek C; Vazquez-Guillamet C; Sato B; Rasche D; Wilson S; Robbins P; Ulbrandt N; Suzich J; Green J; Patera AC; Blair W; Krishnan S; Hotchkiss R
    Crit Care; 2014 Jan; 18(1):R3. PubMed ID: 24387680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of PD-1 signaling in health and immune-related diseases.
    Chen RY; Zhu Y; Shen YY; Xu QY; Tang HY; Cui NX; Jiang L; Dai XM; Chen WQ; Lin Q; Li XZ
    Front Immunol; 2023; 14():1163633. PubMed ID: 37261359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the Roles of B Cells in Patients with Sepsis.
    Dong X; Tu H; Qin S; Bai X; Yang F; Li Z
    J Immunol Res; 2023; 2023():7408967. PubMed ID: 37128298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring immunomodulation in patients with sepsis.
    Kyriazopoulou E; Giamarellos-Bourboulis EJ
    Expert Rev Mol Diagn; 2021 Jan; 21(1):17-29. PubMed ID: 33183116
    [No Abstract]   [Full Text] [Related]  

  • 31. Metabolic reprogramming consequences of sepsis: adaptations and contradictions.
    Liu J; Zhou G; Wang X; Liu D
    Cell Mol Life Sci; 2022 Jul; 79(8):456. PubMed ID: 35904600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single versus combined immunoregulatory approach using PD-1 and CTLA-4 modulators in controlling sepsis.
    Rudick CP; Cornell DL; Agrawal DK
    Expert Rev Clin Immunol; 2017 Sep; 13(9):907-919. PubMed ID: 28742984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The "Self-Sacrifice" of ImmuneCells in Sepsis.
    Wen X; Xie B; Yuan S; Zhang J
    Front Immunol; 2022; 13():833479. PubMed ID: 35572571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care.
    Łysenko L; Leśnik P; Nelke K; Gerber H
    Postepy Hig Med Dosw (Online); 2017 Aug; 71(1):703-712. PubMed ID: 28894043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction and validation of a robust prognostic model based on immune features in sepsis.
    Zheng Y; Liu B; Deng X; Chen Y; Huang Y; Zhang Y; Xu Y; Sang L; Liu X; Li Y
    Front Immunol; 2022; 13():994295. PubMed ID: 36532037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surgical trauma induces postoperative T-cell dysfunction in lung cancer patients through the programmed death-1 pathway.
    Xu P; Zhang P; Sun Z; Wang Y; Chen J; Miao C
    Cancer Immunol Immunother; 2015 Nov; 64(11):1383-92. PubMed ID: 26183035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic effect of human ghrelin and growth hormone: Attenuation of immunosuppression in septic aged rats.
    Zhou M; Yang WL; Aziz M; Ma G; Wang P
    Biochim Biophys Acta Mol Basis Dis; 2017 Oct; 1863(10 Pt B):2584-2593. PubMed ID: 28115288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, Placebo-Controlled, Single Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559).
    Hotchkiss RS; Colston E; Yende S; Angus DC; Moldawer LL; Crouser ED; Martin GS; Coopersmith CM; Brakenridge S; Mayr FB; Park PK; Ye J; Catlett IM; Girgis IG; Grasela DM
    Crit Care Med; 2019 May; 47(5):632-642. PubMed ID: 30747773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immune Checkpoints: Novel Therapeutic Targets to Attenuate Sepsis-Induced Immunosuppression.
    McBride MA; Patil TK; Bohannon JK; Hernandez A; Sherwood ER; Patil NK
    Front Immunol; 2020; 11():624272. PubMed ID: 33613563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dysregulation of neutrophil death in sepsis.
    Zhu CL; Wang Y; Liu Q; Li HR; Yu CM; Li P; Deng XM; Wang JF
    Front Immunol; 2022; 13():963955. PubMed ID: 36059483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.