BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 37292754)

  • 1. A DNA Unwinding Equilibrium Serves as a Checkpoint for CRISPR-Cas12a Target Discrimination.
    Singh J; Liu KG; Allen A; Jiang W; Qin PZ
    bioRxiv; 2023 May; ():. PubMed ID: 37292754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DNA unwinding equilibrium serves as a checkpoint for CRISPR-Cas12a target discrimination.
    Singh J; Liu KG; Allen A; Jiang W; Qin PZ
    Nucleic Acids Res; 2023 Sep; 51(16):8730-8743. PubMed ID: 37522352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Specific Labeling Reveals Cas9 Induces Partial Unwinding Without RNA/DNA Pairing in Sequences Distal to the PAM.
    Li Y; Liu Y; Singh J; Tangprasertchai NS; Trivedi R; Fang Y; Qin PZ
    CRISPR J; 2022 Apr; 5(2):341-352. PubMed ID: 35352981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 Activities with Truncated 16-Nucleotide RNA Guides Are Tuned by Target Duplex Stability Beyond the RNA/DNA Hybrid.
    Li Y; Cooper BH; Liu Y; Wu D; Zhang X; Rohs R; Qin PZ
    Biochemistry; 2023 Sep; 62(17):2541-2548. PubMed ID: 37552860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas effector specificity and cleavage site determine phage escape outcomes.
    Schelling MA; Nguyen GT; Sashital DG
    PLoS Biol; 2023 Apr; 21(4):e3002065. PubMed ID: 37058530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a.
    Sundaresan R; Parameshwaran HP; Yogesha SD; Keilbarth MW; Rajan R
    Cell Rep; 2017 Dec; 21(13):3728-3739. PubMed ID: 29281823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas12a Nucleases Bind Flexible DNA Duplexes without RNA/DNA Complementarity.
    Jiang W; Singh J; Allen A; Li Y; Kathiresan V; Qureshi O; Tangprasertchai N; Zhang X; Parameshwaran HP; Rajan R; Qin PZ
    ACS Omega; 2019 Oct; 4(17):17140-17147. PubMed ID: 31656887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Embedding of DNA Mismatches Within the RNA:DNA Hybrid of CRISPR-Cas9.
    Mitchell BP; Hsu RV; Medrano MA; Zewde NT; Narkhede YB; Palermo G
    Front Mol Biosci; 2020; 7():39. PubMed ID: 32258048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAM-Engineered Toehold Switches as Input-Responsive Activators of CRISPR-Cas12a for Sensing Applications.
    Bagheri N; Chamorro A; Idili A; Porchetta A
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202319677. PubMed ID: 38284432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2'-
    Ke Y; Ghalandari B; Huang S; Li S; Huang C; Zhi X; Cui D; Ding X
    Chem Sci; 2022 Feb; 13(7):2050-2061. PubMed ID: 35308857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an in vivo cleavable donor plasmid for targeted transgene integration by CRISPR-Cas9 and CRISPR-Cas12a.
    Ishibashi R; Maki R; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2022 Oct; 12(1):17775. PubMed ID: 36272994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure- and Content-Dependent Efficiency of Cas9-Assisted DNA Cleavage in Genome-Editing Systems.
    Baranova SV; Zhdanova PV; Lomzov AA; Koval VV; Chernonosov AA
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAM-independent ultra-specific activation of CRISPR-Cas12a via sticky-end dsDNA.
    Zhang W; Mu Y; Dong K; Zhang L; Yan B; Hu H; Liao Y; Zhao R; Shu W; Ye Z; Lu Y; Wan C; Sun Q; Li L; Wang H; Xiao X
    Nucleic Acids Res; 2022 Dec; 50(22):12674-12688. PubMed ID: 36484104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LAMP-CRISPR-Cas12-based diagnostic platform for detection of Mycobacterium tuberculosis complex using real-time fluorescence or lateral flow test.
    Wang Y; Li J; Li S; Zhu X; Wang X; Huang J; Yang X; Tai J
    Mikrochim Acta; 2021 Sep; 188(10):347. PubMed ID: 34542728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Supplying Guide RNA-Mediated CRISPR/Cas12a Fluorescence System for Sensitive Detection of T4 PNKP.
    Yuan X; Yuan H; Liu B; Liu Y
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas nucleases and base editors for plant genome editing.
    Gürel F; Zhang Y; Sretenovic S; Qi Y
    aBIOTECH; 2020 Jan; 1(1):74-87. PubMed ID: 36305010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics.
    Ricci CG; Chen JS; Miao Y; Jinek M; Doudna JA; McCammon JA; Palermo G
    ACS Cent Sci; 2019 Apr; 5(4):651-662. PubMed ID: 31041385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage.
    Cencic R; Miura H; Malina A; Robert F; Ethier S; Schmeing TM; Dostie J; Pelletier J
    PLoS One; 2014; 9(10):e109213. PubMed ID: 25275497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas12a Powered DNA Framework-Supported Electrochemical Biosensing Platform for Ultrasensitive Nucleic Acid Analysis.
    Su J; Ke Y; Maboyi N; Zhi X; Yan S; Li F; Zhao B; Jia X; Song S; Ding X
    Small Methods; 2021 Dec; 5(12):e2100935. PubMed ID: 34928030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.
    Swarts DC; Jinek M
    Wiley Interdiscip Rev RNA; 2018 Sep; 9(5):e1481. PubMed ID: 29790280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.