These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37292755)

  • 1. Balancing Memorization and Generalization in RNNs for High Performance Brain-Machine Interfaces.
    Costello JT; Temmar H; Cubillos LH; Mender MJ; Wallace DM; Willsey MS; Patil PG; Chestek CA
    bioRxiv; 2023 May; ():. PubMed ID: 37292755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder.
    Willsey MS; Nason-Tomaszewski SR; Ensel SR; Temmar H; Mender MJ; Costello JT; Patil PG; Chestek CA
    Nat Commun; 2022 Nov; 13(1):6899. PubMed ID: 36371498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of Essential Neural Activity Timesteps for Intracortical Brain-Computer Interface Based on Recurrent Neural Network.
    Yang SH; Huang JW; Huang CJ; Chiu PH; Lai HY; Chen YY
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
    Nason SR; Mender MJ; Vaskov AK; Willsey MS; Ganesh Kumar N; Kung TA; Patil PG; Chestek CA
    Neuron; 2021 Oct; 109(19):3164-3177.e8. PubMed ID: 34499856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 6. Artificial neural network for brain-machine interface consistently produces more naturalistic finger movements than linear methods.
    Temmar H; Willsey MS; Costello JT; Mender MJ; Cubillos LH; Lam JL; Wallace DM; Kelberman MM; Patil PG; Chestek CA
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor decoding from the posterior parietal cortex using deep neural networks.
    Borra D; Filippini M; Ursino M; Fattori P; Magosso E
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37130514
    [No Abstract]   [Full Text] [Related]  

  • 8. A recurrent neural network for closed-loop intracortical brain-machine interface decoders.
    Sussillo D; Nuyujukian P; Fan JM; Kao JC; Stavisky SD; Ryu S; Shenoy K
    J Neural Eng; 2012 Apr; 9(2):026027. PubMed ID: 22427488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study.
    Wan Z; Liu T; Ran X; Liu P; Chen W; Zhang S
    Front Comput Neurosci; 2023; 17():1135783. PubMed ID: 37251598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring continuous finger function with temporarily paralyzed nonhuman primates using brain-machine interfaces.
    Nason-Tomaszewski SR; Mender MJ; Kennedy E; Lambrecht JM; Kilgore KL; Chiravuri S; Ganesh Kumar N; Kung TA; Willsey MS; Chestek CA; Patil PG
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37084719
    [No Abstract]   [Full Text] [Related]  

  • 11. A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent.
    Skomrock ND; Schwemmer MA; Ting JE; Trivedi HR; Sharma G; Bockbrader MA; Friedenberg DA
    Front Neurosci; 2018; 12():763. PubMed ID: 30459542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for neural decoding in motor cortex.
    Liu F; Meamardoost S; Gunawan R; Komiyama T; Mewes C; Zhang Y; Hwang E; Wang L
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36148535
    [No Abstract]   [Full Text] [Related]  

  • 13. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Approaches for Decoding Motor Intent From Peripheral Nerve Signals.
    Luu DK; Nguyen AT; Jiang M; Xu J; Drealan MW; Cheng J; Keefer EW; Zhao Q; Yang Z
    Front Neurosci; 2021; 15():667907. PubMed ID: 34248481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.
    Vaskov AK; Irwin ZT; Nason SR; Vu PP; Nu CS; Bullard AJ; Hill M; North N; Patil PG; Chestek CA
    Front Neurosci; 2018; 12():751. PubMed ID: 30455621
    [No Abstract]   [Full Text] [Related]  

  • 16. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long term, stable brain machine interface performance using local field potentials and multiunit spikes.
    Flint RD; Wright ZA; Scheid MR; Slutzky MW
    J Neural Eng; 2013 Oct; 10(5):056005. PubMed ID: 23918061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised, piecewise linear decoding enables an accurate prediction of muscle activity in a multi-task brain computer interface.
    Ma X; Rizzoglio F; Bodkin KL; Miller LE
    bioRxiv; 2024 Sep; ():. PubMed ID: 39314275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding of finger trajectory from ECoG using deep learning.
    Xie Z; Schwartz O; Prasad A
    J Neural Eng; 2018 Jun; 15(3):036009. PubMed ID: 29182152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.