BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37292895)

  • 1.
    Alvarez S; Nartey CM; Mercado N; de la Paz A; Huseinbegovic T; Morcos F
    bioRxiv; 2023 May; ():. PubMed ID: 37292895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo functional phenotypes from a computational epistatic model of evolution.
    Alvarez S; Nartey CM; Mercado N; de la Paz JA; Huseinbegovic T; Morcos F
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2308895121. PubMed ID: 38285950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and
    Standley M; Blay V; Beleva Guthrie V; Kim J; Lyman A; Moya A; Karchin R; Camps M
    ACS Infect Dis; 2022 Dec; 8(12):2451-2463. PubMed ID: 36377311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifting Fitness and Epistatic Landscapes Reflect Trade-offs along an Evolutionary Pathway.
    Steinberg B; Ostermeier M
    J Mol Biol; 2016 Jul; 428(13):2730-43. PubMed ID: 27173379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring Epistasis from Genetic Time-series Data.
    Sohail MS; Louie RHY; Hong Z; Barton JP; McKay MR
    Mol Biol Evol; 2022 Oct; 39(10):. PubMed ID: 36130322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Processes Change as Multiple Functions Evolve.
    Mira PM; Østman B; Guzman-Cole C; Sindi S; Barlow M
    Antimicrob Agents Chemother; 2021 Mar; 65(4):. PubMed ID: 33468488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional effects of mutations in proteins can be predicted and interpreted by guided selection of sequence covariation information.
    Cocco S; Posani L; Monasson R
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2312335121. PubMed ID: 38889151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of epistatic interactions and fitness landscapes using a new geometric approach.
    Beerenwinkel N; Pachter L; Sturmfels B; Elena SF; Lenski RE
    BMC Evol Biol; 2007 Apr; 7():60. PubMed ID: 17433106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Complexity as an Ultimate Constraint on Evolution.
    Kaznatcheev A
    Genetics; 2019 May; 212(1):245-265. PubMed ID: 30833289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of epistasis in the evolution of influenza A surface proteins.
    Kryazhimskiy S; Dushoff J; Bazykin GA; Plotkin JB
    PLoS Genet; 2011 Feb; 7(2):e1001301. PubMed ID: 21390205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network models of TEM β-lactamase mutations coevolving under antibiotic selection show modular structure and anticipate evolutionary trajectories.
    Guthrie VB; Allen J; Camps M; Karchin R
    PLoS Comput Biol; 2011 Sep; 7(9):e1002184. PubMed ID: 21966264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of Stability-Induced Epistasis for Substitution Rates.
    Youssef N; Susko E; Bielawski JP
    Mol Biol Evol; 2020 Nov; 37(11):3131-3148. PubMed ID: 32897316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contingency and Entrenchment of Drug-Resistance Mutations in HIV Viral Proteins.
    Choudhuri I; Biswas A; Haldane A; Levy RM
    J Phys Chem B; 2022 Dec; 126(50):10622-10636. PubMed ID: 36493468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potts Hamiltonian models of protein co-variation, free energy landscapes, and evolutionary fitness.
    Levy RM; Haldane A; Flynn WF
    Curr Opin Struct Biol; 2017 Apr; 43():55-62. PubMed ID: 27870991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Sequence-Space Exploration and Emergence of Epistatic Signals in Protein Evolution.
    Bisardi M; Rodriguez-Rivas J; Zamponi F; Weigt M
    Mol Biol Evol; 2022 Jan; 39(1):. PubMed ID: 34751386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial mutations direct alternative pathways of protein evolution.
    Salverda ML; Dellus E; Gorter FA; Debets AJ; van der Oost J; Hoekstra RF; Tawfik DS; de Visser JA
    PLoS Genet; 2011 Mar; 7(3):e1001321. PubMed ID: 21408208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the deformability of an empirical fitness landscape by microbial evolution.
    Bajić D; Vila JCC; Blount ZD; Sánchez A
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11286-11291. PubMed ID: 30322921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic epistasis under varying environmental perturbations.
    Barker B; Xu L; Gu Z
    PLoS One; 2015; 10(1):e0114911. PubMed ID: 25625594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of In Vivo Protein Folding Probability on Local Fitness Landscapes.
    Faber MS; Wrenbeck EE; Azouz LR; Steiner PJ; Whitehead TA
    Mol Biol Evol; 2019 Dec; 36(12):2764-2777. PubMed ID: 31400199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Order Epistasis in Catalytic Power of Dihydrofolate Reductase Gives Rise to a Rugged Fitness Landscape in the Presence of Trimethoprim Selection.
    Tamer YT; Gaszek IK; Abdizadeh H; Batur TA; Reynolds KA; Atilgan AR; Atilgan C; Toprak E
    Mol Biol Evol; 2019 Jul; 36(7):1533-1550. PubMed ID: 30982891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.