These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37292926)

  • 1. Amyloid-β exposed astrocytes induce iron transport from endothelial cells at the blood-brain barrier by altering the ratio of apo- and holo-transferrin.
    Baringer SL; Lukacher AS; Palsa K; Kim H; Lippmann ES; Spiegelman VS; Simpson IA; Connor JR
    bioRxiv; 2023 May; ():. PubMed ID: 37292926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid-β exposed astrocytes induce iron transport from endothelial cells at the blood-brain barrier by altering the ratio of apo- and holo-transferrin.
    Baringer SL; Lukacher AS; Palsa K; Kim H; Lippmann ES; Spiegelman VS; Simpson IA; Connor JR
    J Neurochem; 2023 Oct; 167(2):248-261. PubMed ID: 37667496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apo- and holo-transferrin differentially interact with hephaestin and ferroportin in a novel mechanism of cellular iron release regulation.
    Baringer SL; Palsa K; Spiegelman VS; Simpson IA; Connor JR
    J Biomed Sci; 2023 Jun; 30(1):36. PubMed ID: 37277838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apo- and holo- transferrin differentially interact with ferroportin and hephaestin to regulate iron release at the blood-brain barrier.
    Baringer S; Palsa K; Simpson IA; Connor JR
    Res Sq; 2023 Jan; ():. PubMed ID: 36711476
    [No Abstract]   [Full Text] [Related]  

  • 5. Apo- and holo- transferrin differentially interact with ferroportin and hephaestin to regulate iron release at the blood-brain barrier.
    Baringer SL; Palsa K; Simpson IA; Connor JR
    bioRxiv; 2023 Jan; ():. PubMed ID: 36712094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging roles of astrocytes in blood-brain barrier disruption upon amyloid-beta insults in Alzheimer's disease.
    Yue Q; Hoi MPM
    Neural Regen Res; 2023 Sep; 18(9):1890-1902. PubMed ID: 36926705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy.
    McCarthy RC; Kosman DJ
    Cell Mol Life Sci; 2015 Feb; 72(4):709-27. PubMed ID: 25355056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of brain iron uptake by apo- and holo-transferrin is dependent on sex and delivery protein.
    Baringer SL; Neely EB; Palsa K; Simpson IA; Connor JR
    Fluids Barriers CNS; 2022 Jun; 19(1):49. PubMed ID: 35689283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron transport kinetics through blood-brain barrier endothelial cells.
    Khan AI; Liu J; Dutta P
    Biochim Biophys Acta Gen Subj; 2018 May; 1862(5):1168-1179. PubMed ID: 29466707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers.
    Hersom M; Helms HC; Pretzer N; Goldeman C; Jensen AI; Severin G; Nielsen MS; Holm R; Brodin B
    Mol Cell Neurosci; 2016 Oct; 76():59-67. PubMed ID: 27567687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Murine Beta-Amyloid (1-42) Oligomers Disrupt Endothelial Barrier Integrity and VEGFR Signaling via Activating Astrocytes to Release Deleterious Soluble Factors.
    Yue Q; Zhou X; Zhang Z; Hoi MPM
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel model for brain iron uptake: introducing the concept of regulation.
    Simpson IA; Ponnuru P; Klinger ME; Myers RL; Devraj K; Coe CL; Lubach GR; Carruthers A; Connor JR
    J Cereb Blood Flow Metab; 2015 Jan; 35(1):48-57. PubMed ID: 25315861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor-mediated transcytosis of transferrin through blood-brain barrier endothelial cells.
    Descamps L; Dehouck MP; Torpier G; Cecchelli R
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1149-58. PubMed ID: 8967351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of Alzheimer's Disease Amyloid-β Protein Precursor in Astrocytes Both in vitro and in vivo.
    Liang Y; Raven F; Ward JF; Zhen S; Zhang S; Sun H; Miller SJ; Choi SH; Tanzi RE; Zhang C
    J Alzheimers Dis; 2020; 76(3):1071-1082. PubMed ID: 32597805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain iron transport.
    Qian ZM; Ke Y
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1672-1684. PubMed ID: 31190441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier.
    Chiou B; Neal EH; Bowman AB; Lippmann ES; Simpson IA; Connor JR
    J Cereb Blood Flow Metab; 2019 Nov; 39(11):2117-2131. PubMed ID: 29911470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic analysis of iron accumulation by endothelial cells of the BBB.
    McCarthy RC; Kosman DJ
    Biometals; 2012 Aug; 25(4):665-75. PubMed ID: 22434419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory mechanisms for iron transport across the blood-brain barrier.
    Duck KA; Simpson IA; Connor JR
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):70-75. PubMed ID: 29054412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice.
    Zhang X; Gou YJ; Zhang Y; Li J; Han K; Xu Y; Li H; You LH; Yu P; Chang YZ; Gao G
    Cell Death Discov; 2020 Oct; 6(1):113. PubMed ID: 33298837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.