BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37293102)

  • 1. Asymmetric apical domain states of mitochondrial Hsp60 coordinate substrate engagement and chaperonin assembly.
    Braxton JR; Shao H; Tse E; Gestwicki JE; Southworth DR
    bioRxiv; 2023 May; ():. PubMed ID: 37293102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of dimeric and heptameric mtHsp60 reveal the mechanism of chaperonin inactivation.
    Lai MC; Cheng HY; Lew SH; Chen YA; Yu CH; Lin HY; Lin SM
    Life Sci Alliance; 2023 Jun; 6(6):. PubMed ID: 36973006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex Destabilization in the Mitochondrial Chaperonin Hsp60 Leads to Disease.
    Rodriguez A; Von Salzen D; Holguin BA; Bernal RA
    Front Mol Biosci; 2020; 7():159. PubMed ID: 32766281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of Sparsely-populated Lower-order Oligomeric States of Human Mitochondrial Hsp60 by Cryo-electron Microscopy.
    Wälti MA; Canagarajah B; Schwieters CD; Clore GM
    J Mol Biol; 2021 Dec; 433(24):167322. PubMed ID: 34688687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MitCHAP-60 and Hereditary Spastic Paraplegia SPG-13 Arise from an Inactive hsp60 Chaperonin that Fails to Fold the ATP Synthase β-Subunit.
    Wang J; Enriquez AS; Li J; Rodriguez A; Holguin B; Von Salzen D; Bhatt JM; Bernal RA
    Sci Rep; 2019 Aug; 9(1):12300. PubMed ID: 31444388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hereditary spastic paraplegia SPG13 mutation increases structural stability and ATPase activity of human mitochondrial chaperonin.
    Chen L; Syed A; Balaji A
    Sci Rep; 2022 Oct; 12(1):18321. PubMed ID: 36316435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein.
    Weaver J; Rye HS
    J Biol Chem; 2014 Aug; 289(33):23219-23232. PubMed ID: 24970895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating the Functional Single-Ring GroEL-GroES Chaperonin Systems via Modulating GroEL-GroES Interaction.
    Illingworth M; Ellis H; Chen L
    Sci Rep; 2017 Aug; 7(1):9710. PubMed ID: 28852160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin.
    Parnas A; Nisemblat S; Weiss C; Levy-Rimler G; Pri-Or A; Zor T; Lund PA; Bross P; Azem A
    PLoS One; 2012; 7(12):e50318. PubMed ID: 23226518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and conformational cycle of a bacteriophage-encoded chaperonin.
    Bracher A; Paul SS; Wang H; Wischnewski N; Hartl FU; Hayer-Hartl M
    PLoS One; 2020; 15(4):e0230090. PubMed ID: 32339190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional structure and physiological functions of mammalian wild-type HSP60.
    Okamoto T; Ishida R; Yamamoto H; Tanabe-Ishida M; Haga A; Takahashi H; Takahashi K; Goto D; Grave E; Itoh H
    Arch Biochem Biophys; 2015 Nov; 586():10-9. PubMed ID: 26427351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human mitochondrial Hsp60 in the APO conformation forms a stable tetradecameric complex.
    Enriquez AS; Rojo HM; Bhatt JM; Molugu SK; Hildenbrand ZL; Bernal RA
    Cell Cycle; 2017 Jul; 16(13):1309-1319. PubMed ID: 28594255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL.
    Roseman AM; Chen S; White H; Braig K; Saibil HR
    Cell; 1996 Oct; 87(2):241-51. PubMed ID: 8861908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure.
    Zhang J; Ma B; DiMaio F; Douglas NR; Joachimiak LA; Baker D; Frydman J; Levitt M; Chiu W
    Structure; 2011 May; 19(5):633-9. PubMed ID: 21565698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway and mechanism of tubulin folding mediated by TRiC/CCT along its ATPase cycle revealed using cryo-EM.
    Liu C; Jin M; Wang S; Han W; Zhao Q; Wang Y; Xu C; Diao L; Yin Y; Peng C; Bao L; Wang Y; Cong Y
    Commun Biol; 2023 May; 6(1):531. PubMed ID: 37193829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL.
    Motojima F; Chaudhry C; Fenton WA; Farr GW; Horwich AL
    Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15005-12. PubMed ID: 15479763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-EM structure of human mitochondrial HSPD1.
    Klebl DP; Feasey MC; Hesketh EL; Ranson NA; Wurdak H; Sobott F; Bon RS; Muench SP
    iScience; 2021 Jan; 24(1):102022. PubMed ID: 33506187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex.
    Southworth DR; Agard DA
    Mol Cell; 2011 Jun; 42(6):771-81. PubMed ID: 21700222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-driven molecular chaperone machines.
    Clare DK; Saibil HR
    Biopolymers; 2013 Nov; 99(11):846-59. PubMed ID: 23877967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.