These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37293111)

  • 1. Comprehensive screening of a light-inducible split Cre recombinase with domain insertion profiling.
    Tague N; Andreani V; Fan Y; Timp W; Dunlop MJ
    bioRxiv; 2023 May; ():. PubMed ID: 37293111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Screening of a Light-Inducible Split Cre Recombinase with Domain Insertion Profiling.
    Tague N; Andreani V; Fan Y; Timp W; Dunlop MJ
    ACS Synth Biol; 2023 Oct; 12(10):2834-2842. PubMed ID: 37788288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Inducible Recombinases for Bacterial Optogenetics.
    Sheets MB; Wong WW; Dunlop MJ
    ACS Synth Biol; 2020 Feb; 9(2):227-235. PubMed ID: 31961670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.
    Duplus-Bottin H; Spichty M; Triqueneaux G; Place C; Mangeot PE; Ohlmann T; Vittoz F; Yvert G
    Elife; 2021 Feb; 10():. PubMed ID: 33620312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving tight control of a photoactivatable Cre recombinase gene switch: new design strategies and functional characterization in mammalian cells and rodent.
    Meador K; Wysoczynski CL; Norris AJ; Aoto J; Bruchas MR; Tucker CL
    Nucleic Acids Res; 2019 Sep; 47(17):e97. PubMed ID: 31287871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice.
    Wu J; Wang M; Yang X; Yi C; Jiang J; Yu Y; Ye H
    Nat Commun; 2020 Jul; 11(1):3708. PubMed ID: 32709899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.
    Kawano F; Okazaki R; Yazawa M; Sato M
    Nat Chem Biol; 2016 Dec; 12(12):1059-1064. PubMed ID: 27723747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise optical control of gene expression in
    Davis L; Radman I; Goutou A; Tynan A; Baxter K; Xi Z; O'Shea JM; Chin JW; Greiss S
    Elife; 2021 Aug; 10():. PubMed ID: 34350826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational design of chemogenetic and optogenetic split proteins.
    Dagliyan O; Krokhotin A; Ozkan-Dagliyan I; Deiters A; Der CJ; Hahn KM; Dokholyan NV
    Nat Commun; 2018 Oct; 9(1):4042. PubMed ID: 30279442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural circuit analysis using a novel intersectional split intein-mediated split-Cre recombinase system.
    Khoo ATT; Kim PJ; Kim HM; Je HS
    Mol Brain; 2020 Jul; 13(1):101. PubMed ID: 32616061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Split-CreERT2: temporal control of DNA recombination mediated by split-Cre protein fragment complementation.
    Hirrlinger J; Requardt RP; Winkler U; Wilhelm F; Schulze C; Hirrlinger PG
    PLoS One; 2009 Dec; 4(12):e8354. PubMed ID: 20016782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new location to split Cre recombinase for protein fragment complementation.
    Rajaee M; Ow DW
    Plant Biotechnol J; 2017 Nov; 15(11):1420-1428. PubMed ID: 28317293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split-Cre recombinase effectively monitors protein-protein interactions in living bacteria.
    O'Brien SP; DeLisa MP
    Biotechnol J; 2014 Mar; 9(3):355-61. PubMed ID: 24390935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a tTA-dependent photoactivatable Cre recombinase knock-in mouse model for optogenetic genome engineering.
    Takao T; Hiraoka Y; Kawabe K; Yamada D; Ming L; Tanaka K; Sato M; Takarada T
    Biochem Biophys Res Commun; 2020 May; 526(1):213-217. PubMed ID: 32204914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Split-Cre system designed to detect simultaneous expression of two genes based on SpyTag/SpyCatcher conjugation and Split-GFP dimerization.
    Wei X; Zhang J; Cui J; Xu W; Zhou X; Ma J
    J Biol Chem; 2021 Oct; 297(4):101119. PubMed ID: 34450162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A red light-responsive photoswitch for deep tissue optogenetics.
    Kuwasaki Y; Suzuki K; Yu G; Yamamoto S; Otabe T; Kakihara Y; Nishiwaki M; Miyake K; Fushimi K; Bekdash R; Shimizu Y; Narikawa R; Nakajima T; Yazawa M; Sato M
    Nat Biotechnol; 2022 Nov; 40(11):1672-1679. PubMed ID: 35697806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion.
    Mathony J; Niopek D
    Adv Biol (Weinh); 2021 May; 5(5):e2000181. PubMed ID: 33107225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing.
    Vizoso M; E J Pritchard C; Bombardelli L; van den Broek B; Krimpenfort P; Beijersbergen RL; Jalink K; van Rheenen J
    Nat Commun; 2022 Oct; 13(1):6442. PubMed ID: 36307419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome engineering of Toxoplasma gondii using the site-specific recombinase Cre.
    Brecht S; Erdhart H; Soete M; Soldati D
    Gene; 1999 Jul; 234(2):239-47. PubMed ID: 10395896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data.
    Zhang J; Wang J; Wu Y
    BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S6. PubMed ID: 22537045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.