These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37293348)
21. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms. Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085 [TBL] [Abstract][Full Text] [Related]
22. Fully Automatic Assessment of Background Parenchymal Enhancement on Breast MRI Using Machine-Learning Models. Nam Y; Park GE; Kang J; Kim SH J Magn Reson Imaging; 2021 Mar; 53(3):818-826. PubMed ID: 33219624 [TBL] [Abstract][Full Text] [Related]
23. Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI. Zhang L; Mohamed AA; Chai R; Guo Y; Zheng B; Wu S J Magn Reson Imaging; 2020 Feb; 51(2):635-643. PubMed ID: 31301201 [TBL] [Abstract][Full Text] [Related]
24. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials. Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871 [TBL] [Abstract][Full Text] [Related]
25. Use of Variational Autoencoders with Unsupervised Learning to Detect Incorrect Organ Segmentations at CT. Sandfort V; Yan K; Graffy PM; Pickhardt PJ; Summers RM Radiol Artif Intell; 2021 Jul; 3(4):e200218. PubMed ID: 34350410 [TBL] [Abstract][Full Text] [Related]
26. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis. Chakrabarty S; Sotiras A; Milchenko M; LaMontagne P; Hileman M; Marcus D Radiol Artif Intell; 2021 Sep; 3(5):e200301. PubMed ID: 34617029 [TBL] [Abstract][Full Text] [Related]
27. Automated Segmentation of Visceral, Deep Subcutaneous, and Superficial Subcutaneous Adipose Tissue Volumes in MRI of Neonates and Young Children. Kway YM; Thirumurugan K; Tint MT; Michael N; Shek LP; Yap FKP; Tan KH; Godfrey KM; Chong YS; Fortier MV; Marx UC; Eriksson JG; Lee YS; Velan SS; Feng M; Sadananthan SA Radiol Artif Intell; 2021 Sep; 3(5):e200304. PubMed ID: 34617030 [TBL] [Abstract][Full Text] [Related]
28. Deep Learning Prediction of Voxel-Level Liver Stiffness in Patients with Nonalcoholic Fatty Liver Disease. Pollack BL; Batmanghelich K; Cai SS; Gordon E; Wallace S; Catania R; Morillo-Hernandez C; Furlan A; Borhani AA Radiol Artif Intell; 2021 Nov; 3(6):e200274. PubMed ID: 34870213 [TBL] [Abstract][Full Text] [Related]
29. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning. Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344 [TBL] [Abstract][Full Text] [Related]
30. Influence of Data Distribution on Federated Learning Performance in Tumor Segmentation. Luo G; Liu T; Lu J; Chen X; Yu L; Wu J; Chen DZ; Cai W Radiol Artif Intell; 2023 May; 5(3):e220082. PubMed ID: 37293342 [TBL] [Abstract][Full Text] [Related]
31. Deep Learning Framework for Liver Segmentation from Hossain MSA; Gul S; Chowdhury MEH; Khan MS; Sumon MSI; Bhuiyan EH; Khandakar A; Hossain M; Sadique A; Al-Hashimi I; Ayari MA; Mahmud S; Alqahtani A Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960589 [TBL] [Abstract][Full Text] [Related]
32. Advanced Deep Learning Approach to Automatically Segment Malignant Tumors and Ablation Zone in the Liver With Contrast-Enhanced CT. He K; Liu X; Shahzad R; Reimer R; Thiele F; Niehoff J; Wybranski C; Bunck AC; Zhang H; Perkuhn M Front Oncol; 2021; 11():669437. PubMed ID: 34336661 [TBL] [Abstract][Full Text] [Related]
33. Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network. Jacobsen N; Deistung A; Timmann D; Goericke SL; Reichenbach JR; Güllmar D Z Med Phys; 2019 May; 29(2):128-138. PubMed ID: 30579766 [TBL] [Abstract][Full Text] [Related]
34. Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning. Zhu Y; Hu P; Li X; Tian Y; Bai X; Liang T; Li J Med Phys; 2022 Sep; 49(9):5799-5818. PubMed ID: 35833617 [TBL] [Abstract][Full Text] [Related]
35. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation. Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898 [TBL] [Abstract][Full Text] [Related]
36. Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network. Wang H; Qu T; Bernstein K; Barbee D; Kondziolka D Radiat Oncol; 2023 May; 18(1):78. PubMed ID: 37158968 [TBL] [Abstract][Full Text] [Related]
37. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965 [TBL] [Abstract][Full Text] [Related]
38. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT. Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071 [TBL] [Abstract][Full Text] [Related]
39. Feasibility of Simulated Postcontrast MRI of Glioblastomas and Lower-Grade Gliomas by Using Three-dimensional Fully Convolutional Neural Networks. Calabrese E; Rudie JD; Rauschecker AM; Villanueva-Meyer JE; Cha S Radiol Artif Intell; 2021 Sep; 3(5):e200276. PubMed ID: 34617027 [TBL] [Abstract][Full Text] [Related]
40. Technical and Clinical Factors Affecting Success Rate of a Deep Learning Method for Pancreas Segmentation on CT. Bagheri MH; Roth H; Kovacs W; Yao J; Farhadi F; Li X; Summers RM Acad Radiol; 2020 May; 27(5):689-695. PubMed ID: 31537506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]