These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37293394)

  • 21. Scatter correction based on adaptive photon path-based Monte Carlo simulation method in Multi-GPU platform.
    Zhang Y; Chen Y; Zhong A; Jia X; Wu S; Qi H; Zhou L; Xu Y
    Comput Methods Programs Biomed; 2020 Oct; 194():105487. PubMed ID: 32473514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photon pathlength determination based on spatially resolved diffuse reflectance.
    Nilsson H; Larsson M; Nilsson GE; Strömberg T
    J Biomed Opt; 2002 Jul; 7(3):478-85. PubMed ID: 12175300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models.
    Macdonald C; Arridge S; Powell S
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32798354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory.
    Wang LV; Jacques SL
    Comput Methods Programs Biomed; 2000 Mar; 61(3):163-70. PubMed ID: 10710179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium.
    Kanick SC; Gamm UA; Sterenborg HJ; Robinson DJ; Amelink A
    Opt Lett; 2011 Aug; 36(15):2997-9. PubMed ID: 21808384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid Monte Carlo simulation of detector DQE(f).
    Star-Lack J; Sun M; Meyer A; Morf D; Constantin D; Fahrig R; Abel E
    Med Phys; 2014 Mar; 41(3):031916. PubMed ID: 24593734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiative transport in the delta-P1 approximation for semi-infinite turbid media.
    Seo I; Hayakawa CK; Venugopalan V
    Med Phys; 2008 Feb; 35(2):681-93. PubMed ID: 18383690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models.
    Kao TC; Sung KB
    J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.
    Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A
    Med Phys; 2015 Feb; 42(2):600-605. PubMed ID: 28102604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical sampling depth in the spatial frequency domain.
    Hayakawa CK; Karrobi K; Pera V; Roblyer D; Venugopalan V
    J Biomed Opt; 2019 Jul; 24(7):. PubMed ID: 30218504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry.
    Larsson M; Nilsson H; Strömberg T
    Appl Opt; 2003 Jan; 42(1):124-34. PubMed ID: 12518831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra.
    Liu Q; Ramanujam N
    Appl Opt; 2006 Jul; 45(19):4776-90. PubMed ID: 16799693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Full modulation transfer functions of thick parallel- and focused-element scintillator arrays obtained by a Monte Carlo optical transport model.
    Zarrini-Monfared Z; Karbasi S; Zamani A; Mosleh-Shirazi MA
    Med Phys; 2023 Jun; 50(6):3651-3660. PubMed ID: 36779548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MCCL: an open-source software application for Monte Carlo simulations of radiative transport.
    Hayakawa CK; Malenfant L; Ranasinghesagara J; Cuccia DJ; Spanier J; Venugopalan V
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35415991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ estimation of optical properties of rat and monkey brains using femtosecond time-resolved measurements.
    Hoshi Y; Tanikawa Y; Okada E; Kawaguchi H; Nemoto M; Shimizu K; Kodama T; Watanabe M
    Sci Rep; 2019 Jun; 9(1):9165. PubMed ID: 31235830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interstitial null-distance time-domain diffuse optical spectroscopy using a superconducting nanowire detector.
    Damagatla V; Lanka P; Brodu A; Noordzij N; Qin-Dregely J; Farina A; Pifferi A
    J Biomed Opt; 2023 Dec; 28(12):121202. PubMed ID: 37021124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.