These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 37293541)
1. Programmable RNA editing with endogenous ADAR enzymes - a feasible option for the treatment of inherited retinal disease? Bellingrath JS; McClements ME; Fischer MD; MacLaren RE Front Mol Neurosci; 2023; 16():1092913. PubMed ID: 37293541 [TBL] [Abstract][Full Text] [Related]
2. Novel Engineered Programmable Systems for ADAR-Mediated RNA Editing. Aquino-Jarquin G Mol Ther Nucleic Acids; 2020 Mar; 19():1065-1072. PubMed ID: 32044725 [TBL] [Abstract][Full Text] [Related]
3. Methods for recruiting endogenous and exogenous ADAR enzymes for site-specific RNA editing. Xiang Y; Katrekar D; Mali P Methods; 2022 Sep; 205():158-166. PubMed ID: 35779766 [TBL] [Abstract][Full Text] [Related]
4. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Katrekar D; Yen J; Xiang Y; Saha A; Meluzzi D; Savva Y; Mali P Nat Biotechnol; 2022 Jun; 40(6):938-945. PubMed ID: 35145312 [TBL] [Abstract][Full Text] [Related]
5. A pipeline for identifying guide RNA sequences that promote RNA editing of nonsense mutations that cause inherited retinal diseases. Schneider N; Steinberg R; Ben-David A; Valensi J; David-Kadoch G; Rosenwasser Z; Banin E; Levanon EY; Sharon D; Ben-Aroya S Mol Ther Nucleic Acids; 2024 Mar; 35(1):102130. PubMed ID: 38375504 [TBL] [Abstract][Full Text] [Related]
6. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Yi Z; Qu L; Tang H; Liu Z; Liu Y; Tian F; Wang C; Zhang X; Feng Z; Yu Y; Yuan P; Yi Z; Zhao Y; Wei W Nat Biotechnol; 2022 Jun; 40(6):946-955. PubMed ID: 35145313 [TBL] [Abstract][Full Text] [Related]
7. Current strategies for Site-Directed RNA Editing using ADARs. Montiel-Gonzalez MF; Diaz Quiroz JF; Rosenthal JJC Methods; 2019 Mar; 156():16-24. PubMed ID: 30502398 [TBL] [Abstract][Full Text] [Related]
8. Utilizing AAV-mediated LEAPER 2.0 for programmable RNA editing in non-human primates and nonsense mutation correction in humanized Hurler syndrome mice. Yi Z; Zhao Y; Yi Z; Zhang Y; Tang G; Zhang X; Tang H; Zhang W; Zhao Y; Xu H; Nie Y; Sun X; Xing L; Dai L; Yuan P; Wei W Genome Biol; 2023 Oct; 24(1):243. PubMed ID: 37872590 [TBL] [Abstract][Full Text] [Related]
9. Structural perspectives on adenosine to inosine RNA editing by ADARs. Fisher AJ; Beal PA Mol Ther Nucleic Acids; 2024 Sep; 35(3):102284. PubMed ID: 39165563 [TBL] [Abstract][Full Text] [Related]
10. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Qu L; Yi Z; Zhu S; Wang C; Cao Z; Zhou Z; Yuan P; Yu Y; Tian F; Liu Z; Bao Y; Zhao Y; Wei W Nat Biotechnol; 2019 Sep; 37(9):1059-1069. PubMed ID: 31308540 [TBL] [Abstract][Full Text] [Related]
11. Gene-Based Therapeutics for Inherited Retinal Diseases. Fenner BJ; Tan TE; Barathi AV; Tun SBB; Yeo SW; Tsai ASH; Lee SY; Cheung CMG; Chan CM; Mehta JS; Teo KYC Front Genet; 2021; 12():794805. PubMed ID: 35069693 [TBL] [Abstract][Full Text] [Related]
12. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Merkle T; Merz S; Reautschnig P; Blaha A; Li Q; Vogel P; Wettengel J; Li JB; Stafforst T Nat Biotechnol; 2019 Feb; 37(2):133-138. PubMed ID: 30692694 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms and implications of ADAR-mediated RNA editing in cancer. Wang C; Zou J; Ma X; Wang E; Peng G Cancer Lett; 2017 Dec; 411():27-34. PubMed ID: 28974449 [TBL] [Abstract][Full Text] [Related]
14. Harnessing ADAR-Mediated Site-Specific RNA Editing in Immune-Related Disease: Prediction and Therapeutic Implications. Weng S; Yang X; Yu N; Wang PC; Xiong S; Ruan H Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203521 [TBL] [Abstract][Full Text] [Related]
15. irCLASH reveals RNA substrates recognized by human ADARs. Song Y; Yang W; Fu Q; Wu L; Zhao X; Zhang Y; Zhang R Nat Struct Mol Biol; 2020 Apr; 27(4):351-362. PubMed ID: 32203492 [TBL] [Abstract][Full Text] [Related]
16. To edit or not to edit: regulation of ADAR editing specificity and efficiency. Deffit SN; Hundley HA Wiley Interdiscip Rev RNA; 2016; 7(1):113-27. PubMed ID: 26612708 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Roth SH; Levanon EY; Eisenberg E Nat Methods; 2019 Nov; 16(11):1131-1138. PubMed ID: 31636457 [TBL] [Abstract][Full Text] [Related]
18. ADAR regulates APOL1 via A-to-I RNA editing by inhibition of MDA5 activation in a paradoxical biological circuit. Riella CV; McNulty M; Ribas GT; Tattersfield CF; Perez-Gill C; Eichinger F; Kelly J; Chun J; Subramanian B; Guizelini D; ; Alper SL; Pollak MR; Sampson MG; Friedman DJ Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2210150119. PubMed ID: 36282916 [No Abstract] [Full Text] [Related]
19. RNA editing as a therapeutic approach for retinal gene therapy requiring long coding sequences. Fry LE; Peddle CF; Barnard AR; McClements ME; MacLaren RE Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991730 [TBL] [Abstract][Full Text] [Related]
20. ALU A-to-I RNA Editing: Millions of Sites and Many Open Questions. Schaffer AA; Levanon EY Methods Mol Biol; 2021; 2181():149-162. PubMed ID: 32729079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]