BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37293867)

  • 1. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
    Feng X; Jia G; Peng J; Huang L; Liang X; Zhang H; Liu Y; Zhang B; Zhang Y; Sun M; Li P; Miao Q; Wang Y; Xi L; Hu K; Li T; Hui H; Tian J
    Med Phys; 2023 Jul; 50(7):4651-4663. PubMed ID: 37293867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
    Utkur M; Saritas EU
    Med Phys; 2022 Apr; 49(4):2590-2601. PubMed ID: 35103333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.
    Ota S; Kitaguchi R; Takeda R; Yamada T; Takemura Y
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
    Arami H; Ferguson RM; Khandhar AP; Krishnan KM
    Med Phys; 2013 Jul; 40(7):071904. PubMed ID: 23822441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient-Based Pulsed Excitation and Relaxation Encoding in Magnetic Particle Imaging.
    Jia G; Huang L; Wang Z; Liang X; Zhang Y; Zhang Y; Miao Q; Hu K; Li T; Wang Y; Xi L; Feng X; Hui H; Tian J
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3725-3733. PubMed ID: 35862339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains.
    Zhao Z; Rinaldi C
    Phys Med Biol; 2020 Sep; 65(18):185013. PubMed ID: 32442999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field.
    Morales I; Costo R; Mille N; Carrey J; Hernando A; de la Presa P
    Nanoscale Adv; 2021 Oct; 3(20):5801-5812. PubMed ID: 36132668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of Dynamic Behaviour in Magnetic Nanoparticles.
    Rietberg MT; Waanders S; Horstman-van de Loosdrecht MM; Wildeboer RR; Ten Haken B; Alic L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent quantification of magnetic nanoparticles temperature and relaxation time.
    Shi Y; Weaver JB
    Med Phys; 2019 Sep; 46(9):4070-4076. PubMed ID: 31209904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Study of Brownian and Néel Relaxation Phenomena in Ferrofluids by Mössbauer Spectroscopy.
    Landers J; Salamon S; Remmer H; Ludwig F; Wende H
    Nano Lett; 2016 Feb; 16(2):1150-5. PubMed ID: 26788750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation-based viscosity mapping for magnetic particle imaging.
    Utkur M; Muslu Y; Saritas EU
    Phys Med Biol; 2017 May; 62(9):3422-3439. PubMed ID: 28378707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications.
    Nguyen LH; Phong PT; Nam PH; Manh DH; Thanh NTK; Tung LD; Phuc NX
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced characterization of magnetization dynamics in iron oxide magnetic nanoparticle tracers.
    Bui TQ; Biacchi AJ; Dennis CL; Tew WL; Walker ARH; Woods SI
    Appl Phys Lett; 2022; 120(1):. PubMed ID: 36590240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic response of gelatin ferrogels across the sol-gel transition: the influence of high energy crosslinking on thermal stability.
    Wisotzki EI; Eberbeck D; Kratz H; Mayr SG
    Soft Matter; 2016 May; 12(17):3908-18. PubMed ID: 27029437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of interacting magnetic nanoparticles: effective behavior from competition between Brownian and Néel relaxation.
    Ilg P; Kröger M
    Phys Chem Chem Phys; 2020 Oct; 22(39):22244-22259. PubMed ID: 33001111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoacoustic tomography from magnetic nanoparticles by single-pulse magnetic field.
    Liu H; Li Y; Liu G
    Med Phys; 2022 Jan; 49(1):521-531. PubMed ID: 34822174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics.
    Garraud N; Dhavalikar R; Maldonado-Camargo L; Arnold DP; Rinaldi C
    AIP Adv; 2017 May; 7(5):056730. PubMed ID: 28344854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low drive field amplitude for improved image resolution in magnetic particle imaging.
    Croft LR; Goodwill PW; Konkle JJ; Arami H; Price DA; Li AX; Saritas EU; Conolly SM
    Med Phys; 2016 Jan; 43(1):424. PubMed ID: 26745935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.