BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37294019)

  • 1. Are the Gas-Phase Structures of Molecular Elephants Enduring or Ephemeral? Results from Time-Dependent, Tandem Ion Mobility.
    Zercher BP; Hong S; Roush AE; Feng Y; Bush MF
    Anal Chem; 2023 Jun; 95(25):9589-9597. PubMed ID: 37294019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c.
    Allen SJ; Eaton RM; Bush MF
    Anal Chem; 2017 Jul; 89(14):7527-7534. PubMed ID: 28636328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase.
    Zhou M; Wysocki VH
    Acc Chem Res; 2014 Apr; 47(4):1010-8. PubMed ID: 24524650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-wave ion mobility-mass spectrometry: basic experimental procedures for protein complex analysis.
    Michaelevski I; Kirshenbaum N; Sharon M
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20729801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic Ion Mobility-Collision Activation Experiments Elucidate Protein Behavior in the Gas Phase.
    Eldrid C; Ben-Younis A; Ujma J; Britt H; Cragnolini T; Kalfas S; Cooper-Shepherd D; Tomczyk N; Giles K; Morris M; Akter R; Raleigh D; Thalassinos K
    J Am Soc Mass Spectrom; 2021 Jun; 32(6):1545-1552. PubMed ID: 34006100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase.
    Jurneczko E; Barran PE
    Analyst; 2011 Jan; 136(1):20-8. PubMed ID: 20820495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the conformations of three structurally diverse proteins: cytochrome c, p53, and MDM2, provided by variable-temperature ion mobility mass spectrometry.
    Dickinson ER; Jurneczko E; Pacholarz KJ; Clarke DJ; Reeves M; Ball KL; Hupp T; Campopiano D; Nikolova PV; Barran PE
    Anal Chem; 2015 Mar; 87(6):3231-8. PubMed ID: 25629302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines].
    Zhai R; Gao W; Li M; Yang H
    Se Pu; 2022 Sep; 40(9):782-787. PubMed ID: 36156624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.
    Servage KA; Silveira JA; Fort KL; Russell DH
    Acc Chem Res; 2016 Jul; 49(7):1421-8. PubMed ID: 27334393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Flexible, Modular Platform for Multidimensional Ion Mobility of Native-like Ions.
    Eaton RM; Zercher BP; Wageman A; Bush MF
    J Am Soc Mass Spectrom; 2023 Jun; 34(6):1175-1185. PubMed ID: 37171243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Charge State on the Structures of Serum Albumin Ions in the Gas Phase: Insights from Cation-to-Anion Proton-Transfer Reactions, Ion Mobility, and Mass Spectrometry.
    Gadzuk-Shea MM; Bush MF
    J Phys Chem B; 2018 Nov; 122(43):9947-9955. PubMed ID: 30351115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY.
    McCabe JW; Hebert MJ; Shirzadeh M; Mallis CS; Denton JK; Walker TE; Russell DH
    Mass Spectrom Rev; 2021 May; 40(3):280-305. PubMed ID: 32608033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section.
    Christofi E; Barran P
    Chem Rev; 2023 Mar; 123(6):2902-2949. PubMed ID: 36827511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Intramolecular Interactions of Cytochrome c Using Hydrogen-Deuterium Exchange-Trapped Ion Mobility Spectrometry-Mass Spectrometry and Molecular Dynamics.
    Molano-Arevalo JC; Jeanne Dit Fouque K; Pham K; Miksovska J; Ridgeway ME; Park MA; Fernandez-Lima F
    Anal Chem; 2017 Sep; 89(17):8757-8765. PubMed ID: 28742962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision-Induced Unfolding Is Sensitive to the Polarity of Proteins and Protein Complexes.
    Hong S; Bush MF
    J Am Soc Mass Spectrom; 2019 Nov; 30(11):2430-2437. PubMed ID: 31502225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions.
    Gadkari VV; Ramírez CR; Vallejo DD; Kurulugama RT; Fjeldsted JC; Ruotolo BT
    Anal Chem; 2020 Dec; 92(23):15489-15496. PubMed ID: 33166123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collidoscope: An Improved Tool for Computing Collisional Cross-Sections with the Trajectory Method.
    Ewing SA; Donor MT; Wilson JW; Prell JS
    J Am Soc Mass Spectrom; 2017 Apr; 28(4):587-596. PubMed ID: 28194738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions.
    Haler JRN; Massonnet P; Far J; de la Rosa VR; Lecomte P; Hoogenboom R; Jérôme C; De Pauw E
    J Am Soc Mass Spectrom; 2019 Apr; 30(4):563-572. PubMed ID: 30523570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online protein unfolding characterized by ion mobility electron capture dissociation mass spectrometry: cytochrome C from neutral and acidic solutions.
    Cain RL; Webb IK
    Anal Bioanal Chem; 2023 Feb; 415(5):749-758. PubMed ID: 36622393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Structure-Stabilizing Elements in Proteins by Ion Mobility Mass Spectrometry and Collision-Induced Unfolding.
    Grifnée E; Kune C; Delvaux C; Tilmant T; Quinton L; Matagne A; Mazzucchelli G; Far J; De Pauw E
    J Am Soc Mass Spectrom; 2024 Jun; 35(6):1076-1088. PubMed ID: 38660944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.