BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3729423)

  • 1. Asymmetric reconstitution of the glucose transporter from Ehrlich ascites cell plasma membrane: role of alkali cations.
    McCormick JI; Johnstone RM
    Arch Biochem Biophys; 1986 Jul; 248(1):379-89. PubMed ID: 3729423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple and efficient method for reconstitution of amino acid and glucose transport systems from Ehrlich ascites cells.
    McCormick JI; Tsang D; Johnstone RM
    Arch Biochem Biophys; 1984 Jun; 231(2):355-65. PubMed ID: 6732237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of alkali cations on freeze-thaw-dependent reconstitution of amino acid transport from Ehrlich ascites cell plasma membrane.
    McCormick JI; Silvius JR; Johnstone RM
    J Biol Chem; 1985 May; 260(9):5706-14. PubMed ID: 3988770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume enlargement and recovery of Na+-dependent amino acid transport in proteoliposomes derived from Ehrlich ascites cell membranes.
    McCormick JI; Johnstone RM
    J Biol Chem; 1988 Jun; 263(17):8111-9. PubMed ID: 3372516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional reconstitution of the Trypanosoma brucei plasma-membrane D-glucose transporter.
    Seyfang A; Duszenko M
    Eur J Biochem; 1993 Jun; 214(2):593-7. PubMed ID: 8513808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Na+-independent D-glucose transporter in the enterocyte basolateral membrane: orientation and cytochalasin B binding characteristics.
    Maenz DD; Cheeseman CI
    J Membr Biol; 1987; 97(3):259-66. PubMed ID: 3625759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-dependent amino acid transport in reconstituted membrane vesicles from Ehrlich ascites cell plasma membranes.
    Bardin C; Johnstone RM
    J Biol Chem; 1978 Mar; 253(5):1725-32. PubMed ID: 564350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of basolateral membrane vesicles from pig and human colonocytes: the mechanism of glucose transport.
    Pinches SA; Gribble SM; Beechey RB; Ellis A; Shaw JM; Shirazi-Beechey SP
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):529-34. PubMed ID: 8396917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of the glucose transporter from bovine heart.
    Wheeler TJ; Hauck MA
    Biochim Biophys Acta; 1985 Aug; 818(2):171-82. PubMed ID: 4040772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of the glucose transporter from rat skeletal muscle.
    Wheeler TJ; Hauck MA
    Life Sci; 1987 Jun; 40(24):2309-16. PubMed ID: 3586860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose transport in vesicles reconstituted from Saccharomyces cerevisiae membranes and liposomes.
    Ongjoco R; Szkutnicka K; Cirillo VP
    J Bacteriol; 1987 Jul; 169(7):2926-31. PubMed ID: 2954946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of specific acidic lipids on the reconstitution of Na(+)-dependent amino acid transport in proteoliposomes derived from Ehrlich cell plasma membranes.
    Lin GR; McCormick JI; Dhe-Paganon S; Silvius JR; Johnstone RM
    Biochemistry; 1990 May; 29(19):4575-81. PubMed ID: 2372542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible multifunction of glucose transporter. Transport of nicotinamide by reconstituted liposomes.
    Sofue M; Yoshimura Y; Nishida M; Kawada J
    Biochem J; 1992 Dec; 288 ( Pt 2)(Pt 2):669-74. PubMed ID: 1463467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cycloheximide decreases glucose transporters in rat adipocyte plasma membranes without affecting insulin-stimulated glucose transport.
    Matthaei S; Olefsky JM; Karnieli E
    Biochem J; 1988 Apr; 251(2):491-7. PubMed ID: 3041964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular size of a Na(+)-dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation.
    McCormick JI; Jetté M; Potier M; Béliveau R; Johnstone RM
    Biochemistry; 1991 Apr; 30(15):3704-9. PubMed ID: 2015226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkali cations, freeze-thawing and reconstitution of Na+-dependent amino-acid transport activity.
    McCormick JI; Johnstone RM
    Ann N Y Acad Sci; 1985; 456():121-3. PubMed ID: 3867304
    [No Abstract]   [Full Text] [Related]  

  • 19. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of neutral amino acid transport system from Ehrlich ascites tumor cells.
    Cecchini G; Payne GS; Oxender DL
    Membr Biochem; 1978; 2(1):149-58. PubMed ID: 45779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.