These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37294553)
21. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction. Chen J; Gong X; Li J; Li Y; Ma J; Hou C; Zhao G; Yuan W; Zhao B Science; 2018 Jun; 360(6396):1438-1442. PubMed ID: 29954974 [TBL] [Abstract][Full Text] [Related]
22. A biologically inspired Cu(I)/topaquinone-like co-catalytic system for the highly atom-economical aerobic oxidation of primary amines to imines. Largeron M; Fleury MB Angew Chem Int Ed Engl; 2012 May; 51(22):5409-12. PubMed ID: 22499249 [No Abstract] [Full Text] [Related]
23. Mechanism of the rhodium(III)-catalyzed arylation of imines via C-H bond functionalization: inhibition by substrate. Tauchert ME; Incarvito CD; Rheingold AL; Bergman RG; Ellman JA J Am Chem Soc; 2012 Jan; 134(3):1482-5. PubMed ID: 22257031 [TBL] [Abstract][Full Text] [Related]
24. Solventless oxidative coupling of amines to imines by using transition-metal-free metal-organic frameworks. Qiu X; Len C; Luque R; Li Y ChemSusChem; 2014 Jun; 7(6):1684-8. PubMed ID: 24801486 [TBL] [Abstract][Full Text] [Related]
25. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions. Largeron M; Fleury MB Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811 [TBL] [Abstract][Full Text] [Related]
26. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions. Yang XJ; Chen B; Li XB; Zheng LQ; Wu LZ; Tung CH Chem Commun (Camb); 2014 Jun; 50(50):6664-7. PubMed ID: 24827163 [TBL] [Abstract][Full Text] [Related]
28. Iron-catalyzed synthesis of secondary amines: on the way to green reductive aminations. Stemmler T; Surkus AE; Pohl MM; Junge K; Beller M ChemSusChem; 2014 Nov; 7(11):3012-6. PubMed ID: 25196429 [TBL] [Abstract][Full Text] [Related]
29. Double stereodifferentiation in the catalytic asymmetric aziridination of imines prepared from α-chiral amines. Huang L; Zhang Y; Staples RJ; Huang RH; Wulff WD Chemistry; 2012 Apr; 18(17):5302-13. PubMed ID: 22434622 [TBL] [Abstract][Full Text] [Related]
30. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912 [TBL] [Abstract][Full Text] [Related]
31. Boron-Catalyzed Silylative Reduction of Nitriles in Accessing Primary Amines and Imines. Gandhamsetty N; Jeong J; Park J; Park S; Chang S J Org Chem; 2015 Jul; 80(14):7281-7. PubMed ID: 26152758 [TBL] [Abstract][Full Text] [Related]
32. Photoredox-mediated C-H functionalization and coupling of tertiary aliphatic amines with 2-chloroazoles. Singh A; Arora A; Weaver JD Org Lett; 2013 Oct; 15(20):5390-3. PubMed ID: 24098895 [TBL] [Abstract][Full Text] [Related]
33. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Samec JS; Ell AH; Bäckvall JE Chemistry; 2005 Apr; 11(8):2327-34. PubMed ID: 15706621 [TBL] [Abstract][Full Text] [Related]
34. Iron-Catalyzed α-C-H Cyanation of Simple and Complex Tertiary Amines. Yilmaz O; Dengiz C; Emmert MH J Org Chem; 2021 Feb; 86(3):2489-2498. PubMed ID: 33464080 [TBL] [Abstract][Full Text] [Related]