BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37294804)

  • 1. Finding motifs using DNA images derived from sparse representations.
    Chu SK; Stormo GD
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37294804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning structural motif representations for efficient protein structure search.
    Liu Y; Ye Q; Wang L; Peng J
    Bioinformatics; 2018 Sep; 34(17):i773-i780. PubMed ID: 30423083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STREME: accurate and versatile sequence motif discovery.
    Bailey TL
    Bioinformatics; 2021 Sep; 37(18):2834-2840. PubMed ID: 33760053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural networks with circular filters enable data efficient inference of sequence motifs.
    Blum CF; Kollmann M
    Bioinformatics; 2019 Oct; 35(20):3937-3943. PubMed ID: 30918943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HSMotifDiscover: identification of motifs in sequences composed of non-single-letter elements.
    Singh VK; Misra R; Almo SC; Steidl UG; Bülow HE; Zheng D
    Bioinformatics; 2022 Aug; 38(16):4036-4038. PubMed ID: 35771633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomedical image augmentation using Augmentor.
    Bloice MD; Roth PM; Holzinger A
    Bioinformatics; 2019 Nov; 35(21):4522-4524. PubMed ID: 30989173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representation learning of genomic sequence motifs with convolutional neural networks.
    Koo PK; Eddy SR
    PLoS Comput Biol; 2019 Dec; 15(12):e1007560. PubMed ID: 31856220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveil cis-acting combinatorial mRNA motifs by interpreting deep neural network.
    Zeng X; Wei Z; Du Q; Li J; Xie Z; Wang X
    Bioinformatics; 2024 Jun; 40(Supplement_1):i381-i389. PubMed ID: 38940172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A correlated motif approach for finding short linear motifs from protein interaction networks.
    Tan SH; Hugo W; Sung WK; Ng SK
    BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YAMDA: thousandfold speedup of EM-based motif discovery using deep learning libraries and GPU.
    Quang D; Guan Y; Parker SCJ
    Bioinformatics; 2018 Oct; 34(20):3578-3580. PubMed ID: 29790915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioStructures.jl: read, write and manipulate macromolecular structures in Julia.
    Greener JG; Selvaraj J; Ward BJ
    Bioinformatics; 2020 Aug; 36(14):4206-4207. PubMed ID: 32407511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CellularPotts.jl: simulating multiscale cellular models in Julia.
    Gregg RW; Benos PV
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38134421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expectation pooling: an effective and interpretable pooling method for predicting DNA-protein binding.
    Luo X; Tu X; Ding Y; Gao G; Deng M
    Bioinformatics; 2020 Mar; 36(5):1405-1412. PubMed ID: 31598637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.