These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37294837)
1. Correction to "A Carrier-Free Nanomedicine Enables Apoptosis-Ferroptosis Synergistic Breast Cancer Therapy by Targeting Subcellular Organelles". Zhu J; Zhang K; Zhou Y; Wang R; Gong L; Wang C; Zhong K; Liu W; Feng F; Qu W ACS Appl Mater Interfaces; 2023 Jun; 15(24):29653. PubMed ID: 37294837 [No Abstract] [Full Text] [Related]
2. A Carrier-Free Nanomedicine Enables Apoptosis-Ferroptosis Synergistic Breast Cancer Therapy by Targeting Subcellular Organelles. Zhu J; Zhang K; Zhou Y; Wang R; Gong L; Wang C; Zhong K; Liu W; Feng F; Qu W ACS Appl Mater Interfaces; 2023 May; 15(18):22403-22414. PubMed ID: 37104698 [TBL] [Abstract][Full Text] [Related]
3. Nanomedicine-mediated ferroptosis targeting strategies for synergistic cancer therapy. Yin W; Chang J; Sun J; Zhang T; Zhao Y; Li Y; Dong H J Mater Chem B; 2023 Feb; 11(6):1171-1190. PubMed ID: 36650960 [TBL] [Abstract][Full Text] [Related]
4. Organelle-Specific Mechanisms in Crosstalk between Apoptosis and Ferroptosis. Wu P; Zhang X; Duan D; Zhao L Oxid Med Cell Longev; 2023; 2023():3400147. PubMed ID: 36644574 [TBL] [Abstract][Full Text] [Related]
5. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Fu J; Li T; Yang Y; Jiang L; Wang W; Fu L; Zhu Y; Hao Y Biomaterials; 2021 Jan; 268():120537. PubMed ID: 33260096 [TBL] [Abstract][Full Text] [Related]
6. Carrier free nanomedicine for synergistic cancer therapy by initiating apoptosis and paraptosis. Zheng R; Liu Y; Yu B; Zhao L; Yang N; Chen A; Xu L; Cheng H; Jiang X; Li S J Colloid Interface Sci; 2022 Sep; 622():298-308. PubMed ID: 35512593 [TBL] [Abstract][Full Text] [Related]
7. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Luo Y; Niu G; Yi H; Li Q; Wu Z; Wang J; Yang J; Li B; Peng Y; Liang Y; Wang W; Peng Z; Shuai X; Guo Y Redox Biol; 2021 Jun; 42():101908. PubMed ID: 33674250 [TBL] [Abstract][Full Text] [Related]
8. Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis. Yang J; Ding L; Yu L; Wang Y; Ge M; Jiang Q; Chen Y Sci Bull (Beijing); 2021 Mar; 66(5):464-477. PubMed ID: 36654184 [TBL] [Abstract][Full Text] [Related]
9. Mild photothermal/radiation therapy potentiates ferroptosis effect for ablation of breast cancer via MRI/PA imaging guided all-in-one strategy. Zhang Z; Lo H; Zhao X; Li W; Wu K; Zeng F; Li S; Sun H J Nanobiotechnology; 2023 May; 21(1):150. PubMed ID: 37158923 [TBL] [Abstract][Full Text] [Related]
10. A nanoreactor boosts chemodynamic therapy and ferroptosis for synergistic cancer therapy using molecular amplifier dihydroartemisinin. Yang XX; Xu X; Wang MF; Xu HZ; Peng XC; Han N; Yu TT; Li LG; Li QR; Chen X; Wen Y; Li TF J Nanobiotechnology; 2022 May; 20(1):230. PubMed ID: 35568865 [TBL] [Abstract][Full Text] [Related]
11. Synergistic Functional Nanomedicine Enhances Ferroptosis Therapy for Breast Tumors by a Blocking Defensive Redox System. Chen S; Yang J; Liang Z; Li Z; Xiong W; Fan Q; Shen Z; Liu J; Xu Y ACS Appl Mater Interfaces; 2023 Jan; 15(2):2705-2713. PubMed ID: 36622364 [TBL] [Abstract][Full Text] [Related]
12. Fe(III)-Shikonin Supramolecular Nanomedicine for Combined Therapy of Tumor via Ferroptosis and Necroptosis. Feng W; Shi W; Liu S; Liu H; Liu Y; Ge P; Zhang H Adv Healthc Mater; 2022 Jan; 11(2):e2101926. PubMed ID: 34738742 [TBL] [Abstract][Full Text] [Related]
13. Oxidative stress-amplified nanomedicine for intensified ferroptosis-apoptosis combined tumor therapy. Yu M; Yu J; Yi Y; Chen T; Yu L; Zeng W; Ouyang XK; Huang C; Sun S; Wang Y; Liu Y; Lin C; Wu M; Mei L J Control Release; 2022 Jul; 347():104-114. PubMed ID: 35513212 [TBL] [Abstract][Full Text] [Related]
14. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy. Zhang Z; Pan Y; Cun JE; Li J; Guo Z; Pan Q; Gao W; Pu Y; Luo K; He B Acta Biomater; 2022 Oct; 151():480-490. PubMed ID: 35926781 [TBL] [Abstract][Full Text] [Related]
15. Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy. Lin Y; Chen X; Yu C; Xu G; Nie X; Cheng Y; Luan Y; Song Q Acta Biomater; 2023 Mar; 159():300-311. PubMed ID: 36642338 [TBL] [Abstract][Full Text] [Related]
16. Dynamic ginsenoside-sheltered nanocatalysts for safe ferroptosis-apoptosis combined therapy. Zhao X; Wu J; Guo D; Hu S; Chen X; Hong L; Wang J; Ma J; Jiang Y; Niu T; Miao F; Li W; Wang B; Chen X; Song Y Acta Biomater; 2022 Oct; 151():549-560. PubMed ID: 36007778 [TBL] [Abstract][Full Text] [Related]
17. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Zafar H; Raza F; Ma S; Wei Y; Zhang J; Shen Q Biomater Sci; 2021 Aug; 9(15):5092-5115. PubMed ID: 34160488 [TBL] [Abstract][Full Text] [Related]
18. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Pan WL; Tan Y; Meng W; Huang NH; Zhao YB; Yu ZQ; Huang Z; Zhang WH; Sun B; Chen JX Biomaterials; 2022 Apr; 283():121449. PubMed ID: 35247637 [TBL] [Abstract][Full Text] [Related]
19. Activation of ALOX12 by a multi-organelle-orienting photosensitizer drives ACSL4-independent cell ferroptosis. Wang X; Chen Y; Yang X; Cheng L; He Z; Xin Y; Huang S; Meng F; Zhang P; Luo L Cell Death Dis; 2022 Dec; 13(12):1040. PubMed ID: 36517470 [TBL] [Abstract][Full Text] [Related]
20. Cyclodextrin-Derived ROS-Generating Nanomedicine with pH-Modulated Degradability to Enhance Tumor Ferroptosis Therapy and Chemotherapy. Xu M; Zha H; Han R; Cheng Y; Chen J; Yue L; Wang R; Zheng Y Small; 2022 May; 18(20):e2200330. PubMed ID: 35451223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]