These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37294930)
1. Thermal Management of the Solar Evaporation Process. Li S; Xi Z; Yu L; Yan H; Chen M Langmuir; 2023 Jun; 39(25):8900-8907. PubMed ID: 37294930 [TBL] [Abstract][Full Text] [Related]
2. Dual-Interface Solar Evaporator with Highly-Efficient Thermal Regulation via Suspended Multilayer Design. He N; Sun X; Wang H; Wang B; Tang D; Li L Small; 2024 Sep; 20(38):e2402863. PubMed ID: 38764314 [TBL] [Abstract][Full Text] [Related]
3. Numerical Simulation Technologies in Solar-Driven Interfacial Evaporation Processes. Wei Y; Yang Y; Zhao Q; Ma Y; Qiang M; Fu L; Liu Y; Zhang J; Qu Z; Que W Small; 2024 Aug; 20(32):e2312241. PubMed ID: 38506575 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic Design of Macroporous 3D Truss Materials for Efficient Interfacial Solar Steam Generation. Zhao HY; Huang J; Zhou J; Chen LF; Wang C; Bai Y; Zhou J; Deng Y; Dong WX; Li YS; Yu SH ACS Nano; 2022 Mar; 16(3):3554-3562. PubMed ID: 35231174 [TBL] [Abstract][Full Text] [Related]
5. Band Gap Engineering in an Efficient Solar-Driven Interfacial Evaporation System. Ying P; Li M; Yu F; Geng Y; Zhang L; He J; Zheng Y; Chen R ACS Appl Mater Interfaces; 2020 Jul; 12(29):32880-32887. PubMed ID: 32589006 [TBL] [Abstract][Full Text] [Related]
6. Interface Engineering of a Ti Qiu X; Kong H; Li Y; Wang Q; Wang Y ACS Appl Mater Interfaces; 2022 Dec; 14(49):54855-54866. PubMed ID: 36449984 [TBL] [Abstract][Full Text] [Related]
7. Gradient Heating Effect Modulated by Hydrophobic/Hydrophilic Carbon Nanotube Network Structures for Ultrafast Solar Steam Generation. Cao P; Zhao L; Zhang J; Zhang L; Yuan P; Zhang Y; Li Q ACS Appl Mater Interfaces; 2021 Apr; 13(16):19109-19116. PubMed ID: 33852264 [TBL] [Abstract][Full Text] [Related]
8. Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun. Yu K; Shao P; Meng P; Chen T; Lei J; Yu X; He R; Yang F; Zhu W; Duan T J Hazard Mater; 2020 Jun; 392():122350. PubMed ID: 32109799 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous Salt-Preventing Solar-Thermal Water Evaporator with a High Evaporation Efficiency through Dual-Mode Water Transfer. Yuan P; Men C; Zhao L; Cao P; Yang Z; Niu Y; Zhang Y; Yu Y; Li Q ACS Appl Mater Interfaces; 2022 Apr; 14(13):15549-15557. PubMed ID: 35317554 [TBL] [Abstract][Full Text] [Related]
10. Interfacial Radiation-Absorbing Hydrogel Film for Efficient Thermal Utilization on Solar Evaporator Surfaces. Meng S; Zha XJ; Wu C; Zhao X; Yang MB; Yang W Nano Lett; 2021 Dec; 21(24):10516-10524. PubMed ID: 34878275 [TBL] [Abstract][Full Text] [Related]
11. Efficient Solar Evaporation by [Ni(Phen) Zhang H; Wang Y; Liu Y; Zhao M; Liu C; Wang Y; Albolkany MK; Wu N; Wang M; Yang L; Liu B ChemSusChem; 2020 Jun; 13(11):2945-2951. PubMed ID: 32240576 [TBL] [Abstract][Full Text] [Related]
12. Capillary-Flow-Optimized Heat Localization Induced by an Air-Enclosed Three-Dimensional Hierarchical Network for Elevated Solar Evaporation. Zhang W; Zhang G; Ji Q; Liu H; Liu R; Qu J ACS Appl Mater Interfaces; 2019 Mar; 11(10):9974-9983. PubMed ID: 30773869 [TBL] [Abstract][Full Text] [Related]
13. Patterned Surfaces for Solar-Driven Interfacial Evaporation. Luo Y; Fu B; Shen Q; Hao W; Xu J; Min M; Liu Y; An S; Song C; Tao P; Wu J; Shang W; Deng T ACS Appl Mater Interfaces; 2019 Feb; 11(7):7584-7590. PubMed ID: 30688056 [TBL] [Abstract][Full Text] [Related]
14. A water supply tunable bilayer evaporator for high-quality solar vapor generation. Zhang X; Li T; Liao W; Chen D; Deng Z; Liu X; Shang B Nanoscale; 2022 Jun; 14(21):7913-7918. PubMed ID: 35593223 [TBL] [Abstract][Full Text] [Related]
15. Strontium-Cobaltite-Based Perovskite (SrCoO He M; Alomar M; Alqarni AS; Arshad N; Akbar M; Yousaf M; Irshad MS; Lu Y; Liu Q Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111005 [TBL] [Abstract][Full Text] [Related]
16. Interfacial Solar Evaporation by a 3D Graphene Oxide Stalk for Highly Concentrated Brine Treatment. Finnerty CTK; Menon AK; Conway KM; Lee D; Nelson M; Urban JJ; Sedlak D; Mi B Environ Sci Technol; 2021 Nov; 55(22):15435-15445. PubMed ID: 34739209 [TBL] [Abstract][Full Text] [Related]
17. Reviewing wood-based solar-driven interfacial evaporators for desalination. Dong Y; Tan Y; Wang K; Cai Y; Li J; Sonne C; Li C Water Res; 2022 Sep; 223():119011. PubMed ID: 36037711 [TBL] [Abstract][Full Text] [Related]
18. Biomass-Derived Bilayer Solar Evaporator with Enhanced Energy Utilization for High-Efficiency Water Generation. Yu F; Guo Z; Xu Y; Chen Z; Irshad MS; Qian J; Mei T; Wang X ACS Appl Mater Interfaces; 2020 Dec; 12(51):57155-57164. PubMed ID: 33295750 [TBL] [Abstract][Full Text] [Related]
19. Boosting solar steam generation by structure enhanced energy management. Wang Y; Wu X; Shao B; Yang X; Owens G; Xu H Sci Bull (Beijing); 2020 Aug; 65(16):1380-1388. PubMed ID: 36659217 [TBL] [Abstract][Full Text] [Related]
20. Phonon-Engineered Hard-Carbon Nanoflorets Achieving Rapid and Efficient Solar-Thermal Based Water Evaporation and Space-Heating. Sah A; Sharma S; Saha S; Subramaniam C ACS Appl Mater Interfaces; 2023 Sep; 15(37):43810-43821. PubMed ID: 37682231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]