These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37294938)

  • 1. Microscopic Mechanism of Macromolecular Crowder-Assisted DNA Capture and Translocation through Biological Nanopores.
    Punia B; Chaudhury S
    J Phys Chem B; 2023 Jul; 127(26):5850-5858. PubMed ID: 37294938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular Crowding Facilitates ssDNA Capture within Biological Nanopores: Role of Size Variation and Solution Heterogeneity.
    Punia B; Chaudhury S
    J Phys Chem B; 2024 Feb; 128(8):1876-1883. PubMed ID: 38355410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crowding-Induced DNA Translocation through a Protein Nanopore.
    Yao F; Peng X; Su Z; Tian L; Guo Y; Kang XF
    Anal Chem; 2020 Mar; 92(5):3827-3833. PubMed ID: 32048508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing protein nanopores with poly(ethylene glycol)s.
    Liu W; Nestorovich EM
    Proteomics; 2022 Mar; 22(5-6):e2100055. PubMed ID: 35030301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing.
    Piguet F; Ensslen T; Bakshloo MA; Talarimoghari M; Ouldali H; Baaken G; Zaitseva E; Pastoriza-Gallego M; Behrends JC; Oukhaled A
    Methods Enzymol; 2021; 649():587-634. PubMed ID: 33712201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEG Equilibrium Partitioning in the α-Hemolysin Channel: Neutral Polymer Interaction with Channel Charges.
    Aguilella-Arzo M; Aguilella VM
    Biomacromolecules; 2021 Feb; 22(2):410-418. PubMed ID: 33337868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores.
    Hall AR; Scott A; Rotem D; Mehta KK; Bayley H; Dekker C
    Nat Nanotechnol; 2010 Dec; 5(12):874-7. PubMed ID: 21113160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore Filter: A Method for Counting and Extracting Single DNA Molecules Using a Biological Nanopore.
    Tada A; Takeuchi N; Shoji K; Kawano R
    Anal Chem; 2023 Jul; 95(26):9805-9812. PubMed ID: 37279035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of polymer-nanopore interactions refined using molecular dynamics simulations.
    Balijepalli A; Robertson JW; Reiner JE; Kasianowicz JJ; Pastor RW
    J Am Chem Soc; 2013 May; 135(18):7064-72. PubMed ID: 23590258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges.
    Singh SL; Chauhan K; Bharadwaj AS; Kishore V; Laux P; Luch A; Singh AV
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin.
    Aksoyoglu MA; Podgornik R; Bezrukov SM; Gurnev PA; Muthukumar M; Parsegian VA
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9003-8. PubMed ID: 27466408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein sensing with engineered protein nanopores.
    Mohammad MM; Movileanu L
    Methods Mol Biol; 2012; 870():21-37. PubMed ID: 22528256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retarded Translocation of Nucleic Acids through α-Hemolysin Nanopore in the Presence of a Calcium Flux.
    Wang S; Wang Y; Yan S; Du X; Zhang P; Chen HY; Huang S
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):26926-26935. PubMed ID: 32432849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores.
    Talarimoghari M; Baaken G; Hanselmann R; Behrends JC
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):77. PubMed ID: 29926213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry.
    Reiner JE; Kasianowicz JJ; Nablo BJ; Robertson JW
    Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12080-5. PubMed ID: 20566890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Determinants of Chirally Selective Transport of Amino Acids through the α-Hemolysin Protein Nanopores of Free-Standing Planar Lipid Membranes.
    Lee Y; Chong S; Lee C; Kim J; Choi SQ
    Nano Lett; 2024 Jan; 24(2):681-687. PubMed ID: 38185873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.