BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37294954)

  • 1. Ligand Rigidity Steers the Selectivity and Efficiency of the Photosubstitution Reaction of Strained Ruthenium Polypyridyl Complexes.
    Hakkennes MLA; Meijer MS; Menzel JP; Goetz AC; Van Duijn R; Siegler MA; Buda F; Bonnet S
    J Am Chem Soc; 2023 Jun; 145(24):13420-13434. PubMed ID: 37294954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A detailed density functional theory exploration of the photodissociation mechanism of ruthenium complexes for photoactivated chemotherapy.
    Belletto D; Ponte F; Mazzone G; Sicilia E
    Dalton Trans; 2024 May; 53(19):8243-8253. PubMed ID: 38654633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular Hydrogen Bonding: A Key Factor Controlling the Photosubstitution of Ruthenium Complexes.
    Hirahara M; Nakano H; Uchida K; Yamamoto R; Umemura Y
    Inorg Chem; 2020 Aug; 59(16):11273-11286. PubMed ID: 32799483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced Ligand Exchange Dynamics of a Polypyridyl Ruthenium Complex in Aqueous Solution.
    Dixon IM; Bonnet S; Alary F; Cuny J
    J Phys Chem Lett; 2021 Aug; 12(30):7278-7284. PubMed ID: 34323082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetonitrile Ligand Photosubstitution in Ru(II) Complexes Directly from the
    Steinke SJ; Piechota EJ; Loftus LM; Turro C
    J Am Chem Soc; 2022 Nov; 144(44):20177-20182. PubMed ID: 36282955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the Steric Bulk and Solvent on the Photoreactivity of Ruthenium Polypyridyl Complexes Coordinated to l-Proline.
    Cuello-Garibo JA; Pérez-Gallent E; van der Boon L; Siegler MA; Bonnet S
    Inorg Chem; 2017 May; 56(9):4818-4828. PubMed ID: 28406644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ru(II) Polypyridyl Complexes Derived from Tetradentate Ancillary Ligands for Effective Photocaging.
    Li A; Turro C; Kodanko JJ
    Acc Chem Res; 2018 Jun; 51(6):1415-1421. PubMed ID: 29870227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yellow-light sensitization of a ligand photosubstitution reaction in a ruthenium polypyridyl complex covalently bound to a rhodamine dye.
    Bahreman A; Cuello-Garibo JA; Bonnet S
    Dalton Trans; 2014 Mar; 43(11):4494-505. PubMed ID: 24395135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pivotal Role of a Pentacoordinate (3)MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study.
    Göttle AJ; Alary F; Boggio-Pasqua M; Dixon IM; Heully JL; Bahreman A; Askes SH; Bonnet S
    Inorg Chem; 2016 May; 55(9):4448-56. PubMed ID: 27054312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.
    Knoll JD; Albani BA; Turro C
    Acc Chem Res; 2015 Aug; 48(8):2280-7. PubMed ID: 26186416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of ligand photodissociation in photoactivable [Ru(bpy)2L2]2+ complexes: a density functional theory study.
    Salassa L; Garino C; Salassa G; Gobetto R; Nervi C
    J Am Chem Soc; 2008 Jul; 130(29):9590-7. PubMed ID: 18588292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Synthetic Route to a Ruthenium Complex via Successive Photosubstitution Reactions.
    Hirahara M; Umemura Y
    Inorg Chem; 2021 Sep; 60(17):13193-13199. PubMed ID: 34492768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Preparation of a Heteroleptic Cyclometallated Ruthenium Complex Capable of Undergoing Photosubstitution of a Bidentate Ligand.
    Cuello-Garibo JA; James CC; Siegler MA; Hopkins SL; Bonnet S
    Chemistry; 2019 Jan; 25(5):1260-1268. PubMed ID: 30318782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Does the C-Halogen Bond Break in the Photosubstitution Reaction of 3-Fluorobenzophenone in Acidic Aqueous Solutions?
    Huang J; Ma J; Li M; Liu M; Zhang X; Phillips DL
    J Org Chem; 2015 Oct; 80(19):9425-36. PubMed ID: 26322959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triplet pathways in diarylethene photochromism: photophysical and computational study of dyads containing ruthenium(II) polypyridine and 1,2-bis(2-methylbenzothiophene-3-yl)maleimide units.
    Indelli MT; Carli S; Ghirotti M; Chiorboli C; Ravaglia M; Garavelli M; Scandola F
    J Am Chem Soc; 2008 Jun; 130(23):7286-99. PubMed ID: 18479107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodissociation of CO from [Ru3(mu3-O)(mu-OOCCH3)6(CO)L2] in acetonitrile, where L = pyridine, 4-cyanopyridine and methanol.
    Akashi D; Kido H; Abe M; Sasaki Y; Ito T
    Dalton Trans; 2004 Sep; (18):2883-9. PubMed ID: 15349161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and photobiological evaluation of Ru(II) complexes with expanded chelate polypyridyl ligands.
    Ryan RT; Hachey AC; Stevens K; Parkin SR; Mitchell RJ; Selegue JP; Heidary DK; Glazer EC
    J Inorg Biochem; 2023 Jan; 238():112031. PubMed ID: 36327501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete photochromic structural changes in ruthenium(II)-diimine complexes, based on control of the excited states by metalation.
    Sawaki T; Ishizuka T; Kawano M; Shiota Y; Yoshizawa K; Kojima T
    Chemistry; 2013 Jul; 19(27):8978-90. PubMed ID: 23681489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that influence singlet oxygen formation vs. ligand substitution for light-activated ruthenium anticancer compounds.
    Papish ET; Oladipupo OE
    Curr Opin Chem Biol; 2022 Jun; 68():102143. PubMed ID: 35483128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium(II) pyridylamine complexes with diimine ligands showing reversible photochemical and thermal structural change.
    Kojima T; Morimoto T; Sakamoto T; Miyazaki S; Fukuzumi S
    Chemistry; 2008; 14(29):8904-8915. PubMed ID: 18712740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.