These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 37295070)
1. Meta-Aerogel Ion Motor for Nanofluid Osmotic Energy Harvesting. Zhang F; Yu J; Si Y; Ding B Adv Mater; 2023 Sep; 35(38):e2302511. PubMed ID: 37295070 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting. Jia X; Zhang M; Zhang Y; Fu Y; Sheng N; Chen S; Wang H; Du Y Nano Lett; 2024 Feb; 24(7):2218-2225. PubMed ID: 38277614 [TBL] [Abstract][Full Text] [Related]
3. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776 [TBL] [Abstract][Full Text] [Related]
5. Two-Dimensional Ti Hong S; Ming F; Shi Y; Li R; Kim IS; Tang CY; Alshareef HN; Wang P ACS Nano; 2019 Aug; 13(8):8917-8925. PubMed ID: 31305989 [TBL] [Abstract][Full Text] [Related]
6. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH Yao L; Li Q; Pan S; Cheng J; Liu X Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210 [TBL] [Abstract][Full Text] [Related]
7. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes. Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371 [TBL] [Abstract][Full Text] [Related]
8. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206 [TBL] [Abstract][Full Text] [Related]
9. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. Lin YC; Chen HH; Chu CW; Yeh LH Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070 [TBL] [Abstract][Full Text] [Related]
10. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion. Fu W; Zhang J; Zhang Q; Ahmad M; Sun Z; Li Z; Zhu Y; Zhou Y; Wang S Int J Biol Macromol; 2024 Feb; 257(Pt 1):128546. PubMed ID: 38061510 [TBL] [Abstract][Full Text] [Related]
11. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Xin W; Zhang Z; Huang X; Hu Y; Zhou T; Zhu C; Kong XY; Jiang L; Wen L Nat Commun; 2019 Aug; 10(1):3876. PubMed ID: 31462636 [TBL] [Abstract][Full Text] [Related]
12. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting. Zhou S; Hu Y; Xin W; Fu L; Lin X; Yang L; Hou S; Kong XY; Jiang L; Wen L Adv Mater; 2023 Feb; 35(6):e2208640. PubMed ID: 36457170 [TBL] [Abstract][Full Text] [Related]
13. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S; Sun Z; Ahmad M; Fu W; Gao Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325 [TBL] [Abstract][Full Text] [Related]
14. Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane. Gao Z; Sun Z; Ahmad M; Liu Y; Wei H; Wang S; Jin Y Carbohydr Polym; 2022 Mar; 280():119023. PubMed ID: 35027125 [TBL] [Abstract][Full Text] [Related]
15. Large-Scale, Vertically Aligned 2D Subnanochannel Arrays by a Smectic Liquid Crystal Network for High-Performance Osmotic Energy Conversion. Liu J; Li C; Jia P; Hao J; Gao L; Wang J; Jiang L Adv Mater; 2024 Jun; 36(25):e2313695. PubMed ID: 38452281 [TBL] [Abstract][Full Text] [Related]
17. TEMPO-Oxidized Bacterial Cellulose Nanofibers/Graphene Oxide Fibers for Osmotic Energy Conversion. Sheng N; Chen S; Zhang M; Wu Z; Liang Q; Ji P; Wang H ACS Appl Mater Interfaces; 2021 May; 13(19):22416-22425. PubMed ID: 33949844 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion. Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875 [TBL] [Abstract][Full Text] [Related]
19. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion. Ding L; Xiao D; Zhao Z; Wei Y; Xue J; Wang H Adv Sci (Weinh); 2022 Sep; 9(25):e2202869. PubMed ID: 35780505 [TBL] [Abstract][Full Text] [Related]
20. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion. Awati A; Zhou S; Shi T; Zeng J; Yang R; He Y; Zhang X; Zeng H; Zhu D; Cao T; Xie L; Liu M; Kong B ACS Appl Mater Interfaces; 2023 Jun; 15(22):27075-27088. PubMed ID: 37235387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]