These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37295084)

  • 1. Telecom-Wavelength Quantum Repeater Node Based on a Trapped-Ion Processor.
    Krutyanskiy V; Canteri M; Meraner M; Bate J; Krcmarsky V; Schupp J; Sangouard N; Lanyon BP
    Phys Rev Lett; 2023 May; 130(21):213601. PubMed ID: 37295084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entangling single atoms over 33 km telecom fibre.
    van Leent T; Bock M; Fertig F; Garthoff R; Eppelt S; Zhou Y; Malik P; Seubert M; Bauer T; Rosenfeld W; Zhang W; Becher C; Weinfurter H
    Nature; 2022 Jul; 607(7917):69-73. PubMed ID: 35794269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion.
    Bock M; Eich P; Kucera S; Kreis M; Lenhard A; Becher C; Eschner J
    Nat Commun; 2018 May; 9(1):1998. PubMed ID: 29784941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum storage of entangled photons at telecom wavelengths in a crystal.
    Jiang MH; Xue W; He Q; An YY; Zheng X; Xu WJ; Xie YB; Lu Y; Zhu S; Ma XS
    Nat Commun; 2023 Nov; 14(1):6995. PubMed ID: 37914741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond.
    Blok MS; Kalb N; Reiserer A; Taminiau TH; Hanson R
    Faraday Discuss; 2015; 184():173-82. PubMed ID: 26411802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of a BDCZ quantum repeater node.
    Yuan ZS; Chen YA; Zhao B; Chen S; Schmiedmayer J; Pan JW
    Nature; 2008 Aug; 454(7208):1098-101. PubMed ID: 18756253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement of Trapped-Ion Qubits Separated by 230 Meters.
    Krutyanskiy V; Galli M; Krcmarsky V; Baier S; Fioretto DA; Pu Y; Mazloom A; Sekatski P; Canteri M; Teller M; Schupp J; Bate J; Meraner M; Sangouard N; Lanyon BP; Northup TE
    Phys Rev Lett; 2023 Feb; 130(5):050803. PubMed ID: 36800448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Telecom-heralded entanglement between multimode solid-state quantum memories.
    Lago-Rivera D; Grandi S; Rakonjac JV; Seri A; de Riedmatten H
    Nature; 2021 Jun; 594(7861):37-40. PubMed ID: 34079135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
    De Greve K; Yu L; McMahon PL; Pelc JS; Natarajan CM; Kim NY; Abe E; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Fejer MM; Yamamoto Y
    Nature; 2012 Nov; 491(7424):421-5. PubMed ID: 23151585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network.
    Ikuta R; Kobayashi T; Kawakami T; Miki S; Yabuno M; Yamashita T; Terai H; Koashi M; Mukai T; Yamamoto T; Imoto N
    Nat Commun; 2018 May; 9(1):1997. PubMed ID: 29784998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion-photon entanglement and quantum frequency conversion with trapped Ba
    Siverns JD; Li X; Quraishi Q
    Appl Opt; 2017 Jan; 56(3):B222-B230. PubMed ID: 28157932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entanglement between a Telecom Photon and an On-Demand Multimode Solid-State Quantum Memory.
    Rakonjac JV; Lago-Rivera D; Seri A; Mazzera M; Grandi S; de Riedmatten H
    Phys Rev Lett; 2021 Nov; 127(21):210502. PubMed ID: 34860116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.
    Yu L; Natarajan CM; Horikiri T; Langrock C; Pelc JS; Tanner MG; Abe E; Maier S; Schneider C; Höfling S; Kamp M; Hadfield RH; Fejer MM; Yamamoto Y
    Nat Commun; 2015 Nov; 6():8955. PubMed ID: 26597223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Distance Distribution of Atom-Photon Entanglement at Telecom Wavelength.
    van Leent T; Bock M; Garthoff R; Redeker K; Zhang W; Bauer T; Rosenfeld W; Becher C; Weinfurter H
    Phys Rev Lett; 2020 Jan; 124(1):010510. PubMed ID: 31976687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Repeater Node Demonstrating Unconditionally Secure Key Distribution.
    Langenfeld S; Thomas P; Morin O; Rempe G
    Phys Rev Lett; 2021 Jun; 126(23):230506. PubMed ID: 34170169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in
    Businger M; Nicolas L; Mejia TS; Ferrier A; Goldner P; Afzelius M
    Nat Commun; 2022 Oct; 13(1):6438. PubMed ID: 36307421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion.
    Walker T; Miyanishi K; Ikuta R; Takahashi H; Vartabi Kashanian S; Tsujimoto Y; Hayasaka K; Yamamoto T; Imoto N; Keller M
    Phys Rev Lett; 2018 May; 120(20):203601. PubMed ID: 29864312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.
    Li T; Deng FG
    Sci Rep; 2015 Oct; 5():15610. PubMed ID: 26502993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum entanglement between an optical photon and a solid-state spin qubit.
    Togan E; Chu Y; Trifonov AS; Jiang L; Maze J; Childress L; Dutt MV; Sørensen AS; Hemmer PR; Zibrov AS; Lukin MD
    Nature; 2010 Aug; 466(7307):730-4. PubMed ID: 20686569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.