BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37295103)

  • 1. Ephaptic Coupling as a Resolution to the Paradox of Action Potential Wave Speed and Discordant Alternans Spatial Scales in the Heart.
    Otani NF; Figueroa E; Garrison J; Hewson M; Muñoz L; Fenton FH; Karma A; Weinberg SH
    Phys Rev Lett; 2023 May; 130(21):218401. PubMed ID: 37295103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ephaptic coupling in discordant alternans domain sizes and action potential propagation in the heart.
    Otani NF; Figueroa E; Garrison J; Hewson M; Muñoz L; Fenton FH; Karma A; Weinberg SH
    Phys Rev E; 2023 May; 107(5-1):054407. PubMed ID: 37329030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for discordant alternans.
    Watanabe MA; Fenton FH; Evans SJ; Hastings HM; Karma A
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):196-206. PubMed ID: 11232619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ephaptic coupling in cardiac myocytes.
    Lin J; Keener JP
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):576-82. PubMed ID: 23335235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic origin of spatially discordant alternans in cardiac tissue.
    Hayashi H; Shiferaw Y; Sato D; Nihei M; Lin SF; Chen PS; Garfinkel A; Weiss JN; Qu Z
    Biophys J; 2007 Jan; 92(2):448-60. PubMed ID: 17071663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models.
    Xie Y; Garfinkel A; Weiss JN; Qu Z
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H775-84. PubMed ID: 19482965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Quantification of Spatially Discordant Alternans in Voltage and Intracellular Calcium in Langendorff-Perfused Rabbit Hearts and Inconsistencies with Models of Cardiac Action Potentials and Ca Transients.
    Uzelac I; Ji YC; Hornung D; Schröder-Scheteling J; Luther S; Gray RA; Cherry EM; Fenton FH
    Front Physiol; 2017; 8():819. PubMed ID: 29104543
    [No Abstract]   [Full Text] [Related]  

  • 8. Action potential duration dispersion and alternans in simulated heterogeneous cardiac tissue with a structural barrier.
    Krogh-Madsen T; Christini DJ
    Biophys J; 2007 Feb; 92(4):1138-49. PubMed ID: 17114216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constant DI pacing suppresses cardiac alternans formation in numerical cable models.
    Zlochiver S; Johnson C; Tolkacheva EG
    Chaos; 2017 Sep; 27(9):093903. PubMed ID: 28964144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of spatially discordant repolarization alternans in cardiac tissue.
    Huang C; Song Z; Di Z; Qu Z
    Chaos; 2020 Dec; 30(12):123141. PubMed ID: 33380024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-type Ca2+ channel mutations and T-wave alternans: a model study.
    Zhu ZI; Clancy CE
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3480-9. PubMed ID: 17933974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.
    Hichri E; Abriel H; Kucera JP
    J Physiol; 2018 Feb; 596(4):563-589. PubMed ID: 29210458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of mid-myocardial and epicardial cells in T-wave alternans development: a simulation study.
    Janusek D; Svehlikova J; Zelinka J; Weigl W; Zaczek R; Opolski G; Tysler M; Maniewski R
    Biomed Eng Online; 2018 May; 17(1):57. PubMed ID: 29739399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ephaptic coupling of cardiac cells through the junctional electric potential.
    Copene ED; Keener JP
    J Math Biol; 2008 Aug; 57(2):265-84. PubMed ID: 18265985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of intercellular coupling by the antiarrhythmic peptide rotigaptide suppresses arrhythmogenic discordant alternans.
    Kjølbye AL; Dikshteyn M; Eloff BC; Deschênes I; Rosenbaum DS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H41-9. PubMed ID: 17982010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
    Echebarria B; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051911. PubMed ID: 18233691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discordant Alternans as a Mechanism for Initiation of Ventricular Fibrillation In Vitro.
    Muñoz LM; Gelzer ARM; Fenton FH; Qian W; Lin W; Gilmour RF; Otani NF
    J Am Heart Assoc; 2018 Sep; 7(17):e007898. PubMed ID: 30371176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of structural barriers in the mechanism of alternans-induced reentry.
    Pastore JM; Rosenbaum DS
    Circ Res; 2000 Dec; 87(12):1157-63. PubMed ID: 11110773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of the development of alternans in the heart during controlled diastolic interval pacing.
    Otani NF
    Chaos; 2017 Sep; 27(9):093935. PubMed ID: 28964128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.